

Autonom	ous Indoor + Outdoor Navigation
Positionir	ng Equipment
Hardware	inertial measurement unit (foot or body mounted) additional sensors (GPS, barometer, RFID) lightweight wearable computer / smart phone
Software	motion pattern analysis intelligent sensor fusion and mapping intuitive user interaction
Command Hardware Network Software	Station (optional) computer / notebook WLAN, UMTS or radio operation command and control system database location based service (LBS) tools

pical Data Sheet				
Xsens MTw	Angular velocity	Acceleration	Magnetic field	Pressure
Dimensions	3 axes	3 axes	3 axes	-
				300 -1100 hPa
Full Scale (FS)	± 1200 deg/s	± 160 m/s²	± 1.5 Gauss	(-500 9000 m above sea level)
Linearity	0.1 % of FS	0.2 % of FS	0.2 % of FS	0.05 % of FS
Bias stability ¹	20 deg/hr	-	-	100 Pa/year
Noise	0.05 deg/s/√Hz	0.003 m/s²/√Hz	0.15 mGauss/VHz	0.85 Pa/VHz
Alignment Error	0.1 deg	0.1 deg	0.1 deg	-
Bandwidth ²	100 Hz (max.)	100 Hz (max.)	20 Hz (max.)	-
¹ As measured from	the Allan variance di	agram.		
² Half of the chosen	sampling rate.			

inimum Requirements for Pedestrian					
otion Tracking					
	J				
	Angular velocity	Acceleration	Magnetic field	Pressure	
Dimensions	3 axes	3 axes	3 axes	-	
			± 160 m/s² ± 1.5 Gauss (300 -1100 hPa	
Full Scale ± :	± 1200 deg/s	± 160 m/s ²		(-500 9000 m above sea level)	
Linearity	0.1 % of FS	0.2 % of FS	0.2 % of FS	0.05 % of FS	
Bias stability	20 deg/hr	-	-	100 Pa/year	
Noise	0.05 deg/s/VHz	0.003 m/s²/√Hz	0.15 mGauss/VHz	0.85 Pa/√Hz	
Alignment Error	0.1 deg	0.1 deg	0.1 deg	-	
Bandwidth	100 Hz	100 Hz	20 Hz	-	

Foot Mounted II	MU	TU Graz
Type of movement	Differences in ZUPT during e. duck-walking, sneaking, crawl	g. walking, running, ing, …
Shoe type, weight being carried, surface	Affects foot-impact and sense thus possibilities for reliable Z	d accelerations and UPT
Placement on foot	Affects max sensed accelerati rates, and also ZUPT	ons and angular
Movement trajectory	Some trajectories reduces effe error on position error (e.g. clo	ects of heading psed-loops etc.)
Gyro noise and bias errors	Random, causes main error ty with foot mounted INS (i.e. he	pically associated ading error)
12.11.2012	IPIN 2012 Sydney	Source: FOI 48

Foot Mounted I	MU	TU Graze
Accelerometer dynamic range	Dynamic ranges well over 10 g expected	should be
Gyro dynamic range	Angular velocities well over 700 be expected) deg/sec should
Initialization of bias errors	Some systems assume possibi moments of stand-still in beginn measurement	lity to have short hing of
Initialization of orientation, velocity and position	Not solved completely (automa for GPS-denied environments	tic initialization)
12.11.2012	IPIN 2012 Sydney	Source: FOI 49

Magnetometer		uf Tu
inagriotoriotor		Gra
Strong magnetic disturbances in local environment	Metal objects, electrical wires and other objects may strong magnetic field	, constructions, ly disturb earth
Trajectory	Heading errors reduced by e. magnetic disturbances back-f corridor in both directions)	g. passing strong orth (i.e. walking
Soldier equipment	May cause large local magne not possible to calibrate	tic disturbances,
	1	

Barometer		TU Graze
Wind and weather influence	Barometer senses weather reference barometer at kno conditions reduces these pl	changes, use of wn height in similar roblems
Noise	Gun fire and exploding mur barometric pressure locally intervals	nitions could affect during shorter time
Dynamic range (w/o brake-down)	Could very high pressure cl sensor?	hanges destroy
Opening doors or windows	Buildings may have somew e.g. in staircases or in base	hat different pressure ements
Fires	Heat from fires may cause and increasing temperature pressures	turbulence in the air, es causes higher air
12.11.2012	IPIN 2012 Sydney	Source: FOI 52

	VG	A Resolution			1
#database images checked	4.5	14.6	28.8	43.0	
Processing time (ms)	531	1141	1872	2630	
	QVC	A Resolutior	1]
#database images checked	4.0	14.1	25.0	35.9	
Processing time (ms)	262	692	925	1325	

