
2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Virtual Reconstruction Using an Autonomous Robot
Matthew McGill, Rudino Salleh, Timothy Wiley,
Adrian Ratter, Reza Farid and Claude Sammut

School of Computer Science and Engineering
The University of New South Wales

Sydney, Australia 2052
Email: {mmcgill, rudinos, timothyw, adrianr, rezaf, claude}

@cse.unsw.edu.au

Adam Milstein
National Robotics Engineering Center

Pittsburgh, Pennsylvania 15201
Email: ahpmilstein@gmail.com

Abstract—Advances in sensing technology and algorithm de-
sign make it possible for a robot equipped with a laser range-
finder to generate a map and localise itself within the map as the
robot explores its environment. We describe a system for mapping
and virtual reconstruction developed as part of a robot for urban
search and rescue. The process of mapping and, at the same
time, localising the robot within the map, is called Simultaneous
Localisation and Mapping (SLAM). In many applications, such
as urban search and rescue, information from wheel encoders
is inaccurate and cannot be used for odometry to obtain a
position estimate. However, iterative closest point scan matching
algorithms make it possible for a robot to perform accurate
positioning in unstructured environments where wheel slip is
common. When this positioning is combined with a mapping
algorithm such as FastSLAM, the robot can construct an accurate
map in real-time as it moves. Given the generated map and the
robot’s position within it, a variety of exploration algorithms al-
low the robot to autonomously explore its environment. The robot
is also equipped with an RGB-D camera. The 3D information as
well as the colour video images are incorporated into the map to
produce a 3D virtual reconstruction of the environment as the
robot explores. This robot won the award for best autonomous
robot in three successive RoboCup Rescue Robot competitions
[1], 2009 - 2011.

I. INTRODUCTION

One of the fundamental problems in robotics is that of
mapping and tracking a robot’s location within the map. A
robot must be able to localize itself within a map so that it
knows where objects of interest can be found and how to safely
navigate to the objects. In robotics there are often times when
a map isn’t available at the beginning so the robot has to both
generate the map and track its location within the map. This
problem is simultaneous localization and mapping(SLAM).

A. Position Tracking

Most solutions to the SLAM problem require sensor read-
ings and an estimate of the robot’s position.

The simplest method for tracking a robot’s position is to
use the encoders for its method of locomotion. In the case of
a wheeled robot this means tracking how far each wheel has
rotated in each time step and using the relative and absolute
movements to calculate the forward, lateral and rotational
changes to the robot’s pose.

The problem with using encoders is that they only work
when the robot’s movement is directly related to the rotation
of its wheels. If the robot slips or slides as it moves, possibly
due to environmental factors such as debris or uneven and
slippery surfaces, then its encoders can no longer track its
position accurately.

A laser range finder is often used for position tracking and
mapping. Metric-Based Iterative Closest Point scan matching
(MBICP) [2] is an algorithm that takes two consecutive laser
scans and calculates the translational and rotational motion of
the sensor between the scans. MBICP works by finding points
in the second scan that correspond to points in the first scan.
These points are used to find a correction to an estimate of the
sensor’s motion that better fits the correspondences. MBICP
iteratively finds corresponding points and corrects its motion
estimate until either the correction falls below a threshold or it
overruns a loop counter indicating it cannot accurately match
the two scans.

MBICP requires there to be a number of corresponding
points between each consecutive pair of scans so the scan must
overlap. This is most likely to occur when the laser sweeps
through the same plane in each scan, which can be most
easily accomplished by ensuring the laser sweeps horizontally.
This can be done by mounting the laser horizontally and only
driving on flat ground or by mounting the laser on an auto-
level mount that keeps the laser level as the robot traverses
rough terrain. When using an auto-levelled laser over rough
ground it is likely the laser will be moving vertically. In many
environments this is not a significant problem as there is often
little change vertically, especially in structured environments
such as buildings.

Occupancy Grid MBICP [3] is an extension of MBICP
which uses an occupancy grid. Searching for matching points
can be made more efficient by storing them in an occupancy
grid as near by points will mostly be located in neighbouring
cells but can be anywhere within a laser scan. The number of
observations of a cell can also be taken into account, along
with the time since the cell was last observed. Once a scan is
aligned, it is placed into the grid keeping the grid up to date.
Another benefit of using this grid based method is that a scan
is not compared to just the previous scan but to a number of
earlier scans. This allows some robustness to position tracking

978-1-4673-1954-6/12/$31.00 c© 2012 IEEE

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

(a) Encoders (b) MBICP

(c) OG-MBICP (d) FastSLAM

Fig. 1. Comparison of accuracy between position tracking alternatives and FastSLAM

when a dynamic obstacle such a person passes by the sensor.
This is because as the obstacle moves through the the sensor’s
field of view it will obscure some more distant objects, but as it
moves these objects become visible again and their points can
be compared to points from scans received before the moving
obstacle hid them.

B. FastSLAM

Having a reasonably accurate method for tracking a robot’s
trajectory is the first step in being able to build a map. An
unfortunate reality with all position trackers is that in every
interval there is some error and over time these errors accu-
mulate. To compensate for this unavoidable error, a solution
to the SLAM problem is required.

We use an implementation [4] of the FastSLAM [5]–
[7] algorithm to generate the final map. Figure 1 shows a
comparison of maps generated using three position trackers
with raw sensor data and FastSLAM.

FastSLAM is a particle filter algorithm that can run in real-
time. A FastSLAM map consists of a population of particles
where each particle is an estimate of the robot’s position
and the environment that has been sensed. When new sensor
data are available, each particle has its position updated by
the change in position reported by the position tracker plus
a small random noise corresponding to the expected error
in the position track. Each particle is then given a weight
relative to the likelihood of the robot getting that sensor data
in its new position in the particle’s map of the environment.
The sensor data are then used to update the particle’s map.
A new population of particles is then created by randomly
selecting from the current generation, with each particle’s
chance of selection being dependent on its weight. At this
point, FastSLAM awaits the arrival of new sensor data.

There are several advantages to the use of FastSLAM. It
makes no assumptions about the robot’s environment, other
than it being reasonably static. While it is possible to detect
features and use them to increase the algorithm’s accuracy

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

(a) Emu (b) Negotiator (c) Packbot

Fig. 2. Some Autonomous Robots

it is not a requirement. Also, as it is particle filter based it
can be multi-threaded allowing it to be sped up if more than
one processor is available. It is possible for FastSLAM to
be initialized with a preexisting map and for map updates
to be disabled to provide simple localization within a known
environment.

The are some drawbacks to using FastSLAM. As the
infinite state space of possible positions and possible maps
is represented by a finite set of particles, unlikely possibilities
tend to die out. This is most apparent when traversing long
loops in the environment, in which at time the robot arrives
back at the start of the loop, no particles have survived at the
correct location. Also as each particle has its own copy of the
map the FastSLAM algorithm can use significant amounts of
memory.

Other SLAM algorithms such as Gmapping [8] could poten-
tially be used. Gmapping combines a scan matching algorithm
with a particle filter SLAM implementation to produce reason-
ably accurate maps. In our implementation we have elected to
explicitly separate these components to allow our autonomy
to work with local dynamic sensor readings as well as over
the more stable global map.

II. AUTONOMOUS EXPLORATION

Once a robot has a map and knows where it is located
within its environment, it is possible to endow the robot with
the ability to explore autonomously.

A. Voronoi Grid

Rather than allowing the robot to go anywhere it likes in
the map, it is generally better to mark areas where the robot
should and should not wander. We use a type of voronoi
occupancy grid to mark areas that are safe for the robot to
maneuver through. Figure 3 is an example of the voronoi grid
that we use. It is based on the concept of voronoi diagrams [9].
Occupied cells in the map are clustered to form walls. These
walls are then expanded out. Where two walls expand into the
same cell at the same distance, the cell is marked as belonging
to the voronoi skeleton. Our implementation actually has two
phases of expansion. The first is the region in which the robot

Fig. 3. Voronoi grid showing traversible regions during an autonomous
exploration

cannot go, as entering it would require that part of the robot
be inside an occupied cell. This forbidden region is the yellow
area in figure 3. The second phase expands out to produce the
voronoi skeleton. This phase is represented by the green area
in figure 3. An optimization is to limit the second expansion
phase to some safety margin that we would like the robot to
maintain from walls and other obstacles where it is possible.
Points at the limit are also added to the voronoi skeleton.
Points outside the limit (the black regions in figure 3) are
considered safe to travel through. The blue lines in figure 3
represent the voronoi skeleton which is the mid-line between
walls and the edge of the safety margin in open areas.

B. Wall Following

Now that the robot knows where it can safely go it needs
an method for determining where it should go. For the sake of
simplicity we choose to use a simple wall following algorithm.
When it starts, it chooses to either follow the left or right wall.
If its following the left wall it looks to its left to find a wall.
It then finds the section of the voronoi skeleton associated

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

(a) Left wall following with loop breaking in
a simulated maze

(b) Right wall following with loop breaking in the lab

(c) An autonomously generated map of the
rescue robot arena from RoboCup 2011

(d) Negotiator navigating the rescue robots arena au-
tonomously

Fig. 4. Challenges to autonomous exploration and some results

with that wall. It traces along the skeleton section to some
predetermined distance and that location is set as a waypoint
it can head towards as it follows the wall. This waypoint is
used to calculate the robot’s forward speed and turn rate as the
robot attempts to head directly towards it. The voronoi grid
is updated whenever the map it is based on changes, and as
the robot’s position is updated the wall following algorithm
updates its waypoint, usually by selecting a new point further
along the skeleton. In figure 3, the darker green and blue cells
are the expansion area around the wall being followed. The
purple + marks the current waypoint.

This simple algorithm is useful because it does not require
the full map, just the immediate area around the robot. This
means only the voronoi grid of the area around the robot
needs to be calculated. It is also able to be generated just
using the position tracker and the sensor data. This allows
the exploration algorithm to react to short lived obstacles that
don’t exist in the map. These obstacles can include people
walking past the robot.

C. Loop Escape

The biggest problem with using a wall following algorithm
is that it is possible for it to get caught in a loop. This can

happen if the robot follows the external wall of a building
and circles around to its starting point or if it starts next to a
section of wall that is separated from the rest of the walls.

To escape from this situation our algorithm makes use of
the robot’s path to detect if it has returned to an area it has
previously been. If it has returned to a place it has been before
it searches the local area for a section of the voronoi skeleton
that it has not yet followed. If no such section can be found
then the voronoi grid for the entire map is generated. An A*
[10] search is then run over the entire voronoi grid from the
robot’s current position to any areas that have not yet been
fully explored. This A* search produces a path that the robot
tries to follow to get to the unexplored area. As the robot
moves and the map is updated, the A* search must be rerun
and the path being followed changed. When the robot enters
an area that it hasn’t yet explored it returns to wall following.

The benefits of this approach are that it allows an area to
be fully explored while limiting the processor intensive A* to
only be run when it is absolutely necessary. This exploration
method was used successfully at RoboCup 2011 and com-
bined with the mapping won best in class autonomy in the
rescue robot competition. Figure 4c shows an autonomously
generated map from the rescue robot competition at RoboCup

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Colour Image

Segmented Regions
Boundary and Orientation

Fig. 5. Planar Segmentation

2011.

III. HARDWARE

Our software is designed to be platform independent al-
though most robots are equipped with a scanning laser. On
robots intended for use in rugged environments, these are
mounted on auto-levels. The robots are also equipped with a
variety of colour and thermal cameras. Figure 2 shows some
of the robots that can run autonomously. They are described
in more detail below.

A. Emu

Emu has been developed as a predominantly autonomous
robot. It is constructed using a Volksbot [11] base. On top
of this base is an orientation sensor that is used to detect
the roll and pitch of the robot so that the laser can be auto-
levelled. Also attached to the base is a 4 degree of freedom
arm that supports Emu’s main sensor package, which includes
a Microsoft Kinect, wide angle camera and thermal camera.

B. Negotiator & Packbot

Negotiator and the Packbot are a pair of tracked robots
designed for maneuvering over rough terrain from iRobot [12].
They have both been equipped with auto-levelled lasers and
arms. At the end of their arms are sensor heads that include
RGB-D and thermal cameras. Though the Negotiator and
Packbot are usually teleoperated, they both have been given
autonomous capabilities to allow them to perform tasks while
their drivers are otherwise occupied.

C. Base Station

We connect to the robots using a laptop as a base station as
this allows us to have a graphical user interface (GUI) [13] so
that we can control the robots and it allows us access to the
maps as they are generated.

IV. VIRTUAL RECONSTRUCTION

The FastSLAM implementation that we use allows for
locations of interest to be marked in the map. During RoboCup
Rescue competitions these marks are usually the location of
victims that have been found. These landmarks can include
captured images and point clouds.

By equipping a robot with an RGB-D camera, such as a
Microsoft Kinect, we enable the robot to scan its environment
and collect coloured point clouds. As the robot’s location is
being tracked within the map it is then possible to add the
clouds into the map based on the robot’s location. In our
implementation we periodically stop the robot and then collect
the coloured point cloud. We do this to blur in the images from
the cameras due to motion and to compensate for the delay in
the position tracking and map in determining the robot’s pose.
The robot’s current pose is then combined with the position
of the servos controlling its arm to determine the position
of the camera when the point cloud is captured allowing the
cloud to be placed into the map with reasonable accuracy.
These localized point clouds are then used to produce a virtual
reconstruction of the environment that the robot finds itself in.
The reconstructions can be generated autonomously by setting
a robot to periodically scan using the RGB-D camera as it
explores a new environment.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

(a) Emu exploring the lab (b) GUI showing real-time map as Emu follows the left wall

(c) Fusing of map with point clouds of soccer field (d) Reconstruction of laboratory

(e) Reconstruction of the rescue robot arena from RoboCup 2011 (f) Another view of the rescue robot arena reconstruction

Fig. 6. Virtual reconstructions generated using an autonomous robot

Another approach is to use a higher level representation
such as planes rather than points. Using this representation,
each point cloud is segmented to a set of planar regions. The
boundary of each region can be represented by four points or a
convex hull. Thus, each point cloud can be reconstructed using
only a few feature points. We have used this segmentation
algorithm to generate features for generic object recognition
of common objects in an urban search and rescue arena such
as ’step’, ’staircase’, ’wall’, ’box’ and ’pitch/roll ramp’ [14].
Figure 5 shows the result of this planar segmentation. Each
region is shown as a different colour; the boundary is a convex
hull and the orientation is represented by a 3D vector. The

colour image corresponding to the main point cloud is also
shown for more clarity.

V. RESULTS

Our exploration algorithms were heavily tested in simulation
before they were installed on a robot. Figure 4a shows the path
travelled by a simulated robot using left wall following with
loop breaking in a simulated maze. The simulated robot was
required to complete this exploration task before the algorithm
could be transferred onto a real robot. Figure 4b shows the path
a real robot chose using the same algorithm doing a right wall
follow in our robotics laboratory. The algorithms were tested

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Fig. 7. Planar reconstruction of soccer field from Figure 6c

further during competition in the rescue robot competition at
RoboCup 2011. Not only did the robots have to contend with
sloped floors, the surface was remarkably slippery causing the
robots to regularly slip down the ramps. The elements that
are used to construct the arena for the rescue competition a
taken from a standard set of components that are used by
the National Institute of Standards and Technology (NIST) to
evaluate robots for use by emergency services and the military.

A. Virtual Reconstruction

As there is no reliable means of generating a ground
truth for virtual reconstructions, their evaluation is subjective.
It mainly consists of exploring the virtual environment and
comparing a viewpoint in the virtual world with the same
viewpoint in the real world.

Two virtual reconstructions can be seen in Figure 6. While
not perfect these reconstructions do give some sense as to
the environments that the robots found themselves in. There
is some misalignment visible in Figure 6 between the map
and the cloud and even between the clouds in a scan. These
misalignments are due to a combination of error in the robot’s
localization and error in calculating the kinematics of the
robot’s arm when computing the pose of the RGB-D camera
relative to the robot. Figure 7 shows a planar reconstruction
of the soccer field that has been created using the point clouds
visible in Figure 6c.

It is possible to reduce the error in alignment of the point
clouds by using an ICP or similar algorithm to align the clouds
with each other and to align them to the map. This is some
thing that we are currently looking into.

VI. CONCLUSION

Our experiences show that it is possible to build a robot
capable of operating in moderately hostile environments that
can build a reasonably accurate map of its surrounding. It has
also been demonstrated that such a robot can be equipped with
the ability to autonomously explore its environment. While
exploring this environment the robot can use sensors such as
an RGB-D camera to generate extra information that can be
stored within the map. This information can then be used to
identify objects of interest within the environment, such as
the barrels and stairs, that can be recognized by running a
planar segmentation algorithm over a point cloud collected by
an RGB-D camera.

It is possible for FastSLAM to use data from sensors such
as a RGB-D camera in building and testing its maps. In future
research we will investigate bypassing the laser and using the
Kinect for mapping as well as visualization.

Even when mapping with a laser scanner it is possible to
actively compare point clouds from an RGB-D camera to the
laser-built map, so that the map and the point clouds can be
better aligned.

ACKNOWLEDGMENT

This research was made possible thanks to the support of
the Australian Center of Excellence for Autonomous Systems.

REFERENCES

[1] (2012, Aug.) Robocup 2011 - istanbul. [Online]. Available:
http://www.robocup2011.org

[2] J. Minguez, F. Lamiraux, and L. Montesano, “Metric-based scan match-
ing algorithms for mobile robot displacement estimation,” in Proc. IEEE
ICRA ’05, Barcelona, Spain, Apr. 18–22, 2005, pp. 3557–3563.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

[3] A. Milstein, M. McGill, T. Wiley, R. Salleh, and C. Sammut, “Occu-
pancy voxel metric based iterative closest point for position tracking in
3d enviroments,” in Proc. IEEE ICRA ’11, Shanghai, China, May 9–13,
2011, pp. 4048–4053.

[4] ——, “A method for fast encoder-free mapping in unstructured environ-
ments,” Field Robotics, vol. 26, no. 6, pp. 817–831, Nov. 2011.

[5] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “Fastslam: A
factored solution to the simultaneous localization and mapping problem,”
in Proc. NCAI ’02, Edmondton, Canada, Jul. 2002, pp. 593–598.

[6] A. Eliazar and R. Parr, “Dp-slam: Fast, robust simultaneous localization
and mapping without predetermined landmarks,” in Proc. IJCAI ’03,
Acapulco, Mexico, Aug. 2003, pp. 1135–1142.

[7] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA: MIT Press, 2005.

[8] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” in Proc. IEEE ICRA ’05, Barcelona, Spain, Apr. 18–22
2005, pp. 2432–2437.

[9] (2012, Aug.) Voronoi diagram. [Online]. Available:
http://en.wikipedia.org/wiki/Voronoi diagram

[10] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” Systems Science and Cybernetics,
IEEE Transactions on, vol. 4, no. 2, pp. 100 –107, Jul. 1968.

[11] (2012, Aug.) Fraunhofer iais: Volksbot. [Online]. Available:
http://www.iais.fraunhofer.de/4821.html?&L=1

[12] (2012, Aug.) irobot corporation: Robots that make a difference.
[Online]. Available: http://www.irobot.com

[13] M. Kadous, R. Sheh, and C. Sammut, “Effective user interface design
for rescue robotics,” in Proc. Human Robot Interaction Conference, Salt
Lake City, USA, Mar.2–4 2006.

[14] R. Farid and C. Sammut, “A relational approach
to plane-based object categorization,” RSS 2012 Work-
shop on RGB-D Cameras, Jul. 2012. [Online]. Avail-
able: http://www.cs.washington.edu/ai/Mobile Robotics/rgbd-workshop-
2012/papers/farid-rgbd12-object-categorization.pdf

