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Abstract—With increasing user demands on Location-based 
Services (LBS) and Social Networking Services (SNS), indoor 
positioning has become more crucial. Because of the general 
failure of GPS indoors, non-GNSS navigation technologies are 
essential for such areas. Wireless Local Area Networks (WLAN) 
have widely been employed for indoor localisation based on the 
Received Signal Strength (RSS)-based location fingerprinting 
technique. The fingerprinting technique stores the location-
dependent characteristics of a signal collected at known locations 
ahead of the system’s use for localisation in a database. When 
positioning, the user’s device records its own vector(s) of signal 
strength and matches it against the pre-recorded database of 
vectors by applying pattern matching algorithms. Location is 
then calculated based on the best matches between the new and 
stored vectors. We examined the relationship between the 
measured Manhattan Distance (MD), Euclidean Distance (ED), 
and other vector distances over the geometric distance between 
Reference Points (RPs) in a fingerprint database. The correlation 
between geometric and vector distance was poor. However, 
because “nearest neighbor” algorithms are used, only short 
vector distances are important. Furthermore, the measured RSSs 
varied much more as a function of distance (due to fast fading) 
than it did as a function of time at a single test point. Hence, the 
difference between variances measured at two test points was not 
a good indicator of the measured difference in signal strength. 
This led to the current investigation of very short geometric 
distances. In this paper, a new algorithm is applied to examine 
data from locations at very short ranges from each other and to 
investigate the relationship between vector distance and the 
geometric distance in closer areas in order to observe the nature 
of the relationship between short-range fingerprints. The 
experimental test bed was carried out in a large furnished office. 
Two west-east and south-north lines in a cross shape with 4m 
length are considered. We find that even at short distances, 
variation due to fading dominates and using other vector 
distances instead of MD or ED can help decrease the effect of 
such variation in positioning. 
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I.  INTRODUCTION  
Indoor positioning has become highly important because of 

the difficulties satellite-based technology such as the Global 
Positioning System (GPS) experiences operating in such areas, 
e.g. low received signal power and low visibility of satellites. 
Non-satellite-based technologies, therefore, are important for 

indoor localisation. Utilizing signals of opportunity is a 
reassuring alternative to GPS due to much higher power levels 
and wider coverage in indoor environments [1]. 

Many studies have usefully employed wireless networks for 
indoor localisation based on the Received Signal Strength 
(RSS)-based location fingerprinting technique [2]. Unlike 
almost all other radio-navigation techniques, fingerprinting is 
not geometrical. In other words, the position solution does not 
rely on the angle to or distance from the transmitters. Instead, it 
requires a survey of Radio Frequency (RF) signal strength 
vectors to be made ahead of the system’s use for localisation. 
The fingerprinting technique stores the location-dependent 
characteristics of a signal collected at Reference Points (RPs) 
in a database and applies pattern matching algorithms to find 
the best match between the fingerprint of the user and the 
database, and eventually estimates the position of the user 
based on good matches. The matching methods are based on 
deterministic [3] and probabilistic [4] algorithms which have 
been used in Wi-Fi [2], FM radio [5], and mobile phone [6] 
networks. The measurements of the Received Signal Strength 
(RSS) values at one location can vary considerably, but in 
deterministic location fingerprinting the average value is stored 
for the post processing and position determination stage.  

This investigation of short-range fingerprint statistics arose 
from an earlier work [7] in which we found that there was not a 
good relationship between geometric distance and the signal 
strength metric used to indicate it. For short distances, this 
relationship was better. We therefore here investigate even 
shorter distances in order better to understand this relationship. 

The rest of the paper is organised as follows. Section II 
presents the related work on fingerprinting technique and 
investigation of the relationship between real distance and 
vector distance between fingerprints. It also explains the 
motivation to examine shorter distances and other vector 
distances. The short distance experiment and a new method to 
evaluate the variation of vector distance versus real distances 
for short distances are described in Section III. The effect of 
using various vector distances on this relationship is also 
investigated in this section. Finally, the conclusions of the work 
are discussed in Section IV. 

978-1-4673-1954-6/12/$31.00 ©2012 IEEE 

mailto:v.moghtadaiee@student.unsw.edu.au
mailto:a.dempster@unsw.edu.au


II. RELATED WORK 
If the propagation environment in which the system 

operates is known, the absolute distance between the 
transmitter and receiver can be calculated in an accurate 
manner. However, the point of fingerprinting is that it does not 
require knowledge either of the transmitters’ location, or the 
characteristics of the environment. Only the measurements 
which imply the characteristics of the environment, that is the 
RSSs, are needed. 

In training stage of fingerprinting method, when recording 
the database of fingerprints associated with RPs, many 
individual RSSs are recorded, and these can vary significantly. 
A typical fingerprint is the average of the recorded RSSs. The 
fingerprint can also include information about the distribution, 
either a histogram for each transmitter or a more simplified 
parameter such as variance. 

Once the database of fingerprints exists, a device calculates 
position in positioning stage of fingerprinting technique by 
recording a fingerprint and matching to the database. This 
usually consists of measuring a distance between the recorded 
RSS fingerprint and each RP fingerprint in the database. We 
will refer to this distance as the “vector distance” which has 
units related to dBm (as opposed to “geometric distance” in 
meters between the Test Point (TP) and a RP).  

Assume we have a set of n RPs in a desired area, the 
positions of which are known as loci = (xi, yi) and are stored 
in the database along with the RSS vector of all the APs at all 
RPs. The vector distance between fingerprints of the TP and a 
RP defined as: 

𝑉𝐷 = (∑ |𝑅𝑆𝑆𝑅𝑃(𝑖) − 𝑅𝑆𝑆𝑇𝑃(𝑖)|𝑞𝑃
𝑖=1 )1/𝑞             (1) 

where P is the number of APs in Wi-Fi positioning, i.e. the 
number of elements in the fingerprint vectors. RSSRP  and 
RSS𝑇𝑃 are the RSS vector at one RP and the TP respectively. 
The index q defines the type of the vector distance measures. 
The most popular vector distance measures are Manhattan 
Distance (MD) and Euclidean Distance (ED), the L1 (q=1) and 
L2 (q=2) norms. The minimax or infinity norm is q=∞. 

Once this vector distance is calculated, different matching 
algorithms can be applied to provide location with respect to 
the RPs. The most popular pattern matching methods in 
deterministic approach of fingerprinting are Nearest Neighbor 
(NN) and K-Weighted Nearest Neighbors (KWNN). NN 
method simply selects the RP with shortest vector distance, 
while KWNN algorithms calculates the weighted average of 
the positions of the K nearest neighbors as a position 
estimation of a TP. This algorithm gives improved results [2], 
[5], [8]. 

Existing data from location fingerprinting experiments is 
used to help gain some insight into the nature of errors arising 
in this process. It should be noted that it is possible for two or 
more remote locations to have near-identical sets of RSS 
values, and a location estimate may consequently be totally 
inaccurate. Hence, the investigation of the relationship between 
real distance and vector distance is significant. This 
relationship was first introduced for MD in Wi-Fi positioning 
in our previous work [7], while most of the studies are based 

on the relationship between geometric distance from an AP and 
the RSS from that AP [9]. The relationship between real 
distance and RSS distance also is investigated based on ED for 
both Wi-Fi and FM based positioning in our previous work for 
a set of RPs in an indoor environment [10]. More information 
on the layout and the RPs distribution can be found in [8].  
Fig.1 illustrates the comparison between MD and ED 
distribution versus the real distances between 119 RPs for the 
data recorded for [8].  

Fig. 1 indicates that the inferred relationship between the 
vector distance and the real distance is not as strong as we 
might like. By studying the vector distance between the RP 
fingerprints and comparing them with real distance, it can be 
seen that there is a definite trend, i.e. that they are related. 
However, the spread that is shown in the figure is due to the 
power measurements varying much more erratically than 
would allow good prediction, due to the specifics of the indoor 
environment, signal fading, and features such as walls between 
the RPs attenuating signals.  

Comparison between using MD and ED for calculating the 
vector distances between the points in this figure demonstrates 
that the spread of the signal strength measurements can 
interestingly decrease when utilising ED. In addition, ED gives 
lower vector distance values as could be expected based on (1) 
when q equals 2. The better the standard deviation with respect 
to the linear regression is the more considerable the 
characteristics of the linear regression (slope and intercept) are. 
In other words, even though higher slope of MD induces that 
MD works better, since the MD linear regression does not 
represent a good estimation of MD especially in short distances 
the slope function cannot be a good criteria in this case. Hence, 
ED seems to be a better estimator since the standard deviations 
with respect to the linear regressions are 15.97dBm and 
8.08dBm for MD and ED, respectively. It can be also seen that 
the linear regression fits the variation of signal strength over 
the nearest neighbors or short distances much better for ED 
than for MD. 

 
Figure 1.  Distribution of MD and ED between 119 RPs shown in [8] versus 

the real distance between the RPs. Linear regressions are also shown. 



The significant point here is that we cannot estimate the 
user position by the linear regression in Fig. 1. The reason for 
this is that while this figure gives a good indication of how 
vector distance between RP fingerprints indicates real distance, 
the positioning algorithms tend to match to nearest neighbors 
so behavior of distant RPs is not relevant. Furthermore, the 
presence of walls in an indoor environment makes the nearest 
RPs more influential. Hence, the investigation of the points 
with short distances is more essential. For this purpose, we 
examine the relationship between vector distance and the 
geometric distance in closer areas. Furthermore, comparison of 
results between MD and ED motivates us to further investigate 
using other vector distance measures based on (1) and to 
examine whether utilizing another q decreases the effect of 
high signal strength variation, especially over short distances. 

III. A SHORT DISTANCE EXPERIMENT 

A. Data Collection 
This paper uses the same data recorded for [11]. The 

experimental test bed was located on the fourth floor of 
Electrical Engineering Building at the University of New South 
Wales (UNSW), Sydney, Australia. In a large furnished office 
(about 45m2), two west-east and south-north lines in a cross 
shape were marked on each axis at [-200 -100 -50 -20 -10 -5 -1 
0 1 5 10 20 50 100 200] centimeters so that a local coordinate 
system was created.  

The intersection of the west-east and south-north lines 
called “Origin” in this paper. The distances were selected so 
that they range from well below the signal wavelength (12cm) 
to above the accuracy of fingerprinting systems (1.2 - 1.5m). 
The experiment was carried out when few people were in the 
vicinity. The researcher recorded data for 2 minutes at each 
point from west to east and then south to north as in Fig. 2, 
always facing north. There is a limit to how accurately a user 
can hold a position like this, but it is important to replicate real 
operating conditions as far as possible. 

Two separate sets of data were recorded. The first used a 
palm sized notebook computer equipped with internal Wi-Fi 
receiver running the UNSW School of Computer Science & 
Engineering (CSE) developed location-based RSSI collection 
software for a Linux platform called Kismet. The second set of 
data used an iPAQ pocket PC running Ministumbler. 
MiniStumbler detecting 802.11b, 802.11a and 802.11g 
WLANs. It sends out a probe request about once a second, and 
reports the responses. The output file provides SSID, BSSID, 
maximum signal, minimum noise, maximum SNR, channel 
number, IP Address of AP, IP Subnet and Mask. As discussed 
in [11] bimodal problems were observed in the Kismet data, 
which makes it less reliable. Therefore, we used just the 
Ministumbler data here in this work.  

B. Analysis Results 
In this investigation, there was no positioning phase so all 

of the reference points used are effectively our test points with 
the same RSS vectors. There are 7 APs observed and 54 
samples were recorded at all points. The RSS data were simply 
processed to provide mean signal strength for each of the APs 
at each point. The standard deviation of the measurements is 
2.4dBm.  

 

 
 

 

 

 

 

 

 

 

 

 
Figure 2.  Test bed- the crosses indicate the points where data is recorded 

Different vector distances (with various q values) and 
geometric distance were calculated between all pairs of test 
points. The results based on different values of q are shown in 
Table I. The standard deviation with respect to the linear fit is 
4.23dBm for MD and 1.98dBm for ED which again 
demonstrates that ED is a better estimator than MD. However, 
this Table shows that by considering other values of q the fitted 
standard estimation is minimum when q equals 4, indicating 
that using vector distances with q = 4 gives the best estimator 
here (although the most popular vector distance is ED). 
However, it should be noted that the fitted standard deviations 
are almost the same for the higher values of q, even when q is 
infinity.  

Furthermore, as can be seen in Table I, the linear fits have 
intercepts of 10.22dBm and 4.88dBm and slopes of 
0.0590dBm/cm and 0.0266dBm/cm based on MD and ED 
respectively. ED, hence, has lower intercept and shows better 
definition of the “vector distance” between points compared to 
MD. However, based on this Table, q equals 4 can be again 
selected as the best estimator due to the fact that even though 
the slopes and intercepts decrease as q increases, the difference 
when using q equals 4 and other higher signal distance 
measures (i.e. q with higher values) is not considerable.  



The considerable point here is that q equals infinity 
(infinity norm) can also be as good as q equals 4, as the values 
of slope, intercept and fitted standard deviation are similar𝑞 ≥
4. Therefore, it may be a more appropriate decision to accept 
infinity norm as the best estimator and then easily use the 
following equation instead of using (1): 

 𝑉𝐷 = 𝑚𝑎𝑥𝑖(|𝑅𝑆𝑆𝑅𝑃(𝑖) − 𝑅𝑆𝑆𝑇𝑃(𝑖)|), 𝑖 = 1,2, … ,𝑃       (2) 

Utilising (2) means that we just need to simply pick the 
maximum signal strength difference received from all APs 
between two points and consider it as a vector distance 
between those two points. Fig. 3 illustrates this result for MD 
(q = 1), ED (q = 2), and q = ∞. 

 

TABLE I.     LINEAR FITS RESULTS WHEN USING DIFFERENT VECTOR 
DISTANCES 

q Slopes 
(dBm/cm) 

Intercepts 
(dBm) 

Fitted std. 
(dBm) 

1/3 2.421 394.77 198.83 

1/2 0.3641 60.29 28.3 

1 0.059 10.22 4.23 

2 0.0266 4.88 1.98 

3 0.0216 4.08 1.75 

4 0.0199 3.82 1.7 

5 0.0191 3.7 1.71 

6 0.0187 3.64 1.72 

7 0.0184 3.61 1.72 

8 0.0182 3.58 1.73 

9 0.0181 3.57 1.73 

10 0.018 3.56 1.74 

50 0.0177 3.52 1.76 

Inf 0.0176 3.52 1.76 

 

 
Figure 3.   Vector distances for q=1, 2, ∞ vs. real geometric distance for 

Ministumbler data (with linear fits) 

In order to better investigate the nearest areas for one point 
and to identify different behaviour of the signal in various 
distance regions, a new method is proposed. In this method 
different areas defined by circles are considered around one 
point and then the variation of vector distances over real 
distances between that point and the other points inside each 
circle are examined. It can indicate how different the vector 
distances between the points are even with very short real 
geometric distances. As can be seen in Fig. 4, in our 
experiment, the radii of the circles are from 1cm to 400cm 
because they are the minimum and maximum distance between 
the points, respectively. 

By putting the origin of theses circles on every desired 
point, we can see how a vector distance changes as real 
distance varies from that point. Fig. 5 shows how this method 
works. It depicts the variation of ED over real distances 
between the origin and the RPs inside the different radius of 
circles. The linear regression has been shown over the points 
within the circles. For clarity, the variation based on only four 
circles with radii of 50, 100, 150, and 200cm are displayed in 
this figure. The slopes of the linear regression defined as: 

𝑠𝑙𝑜𝑝𝑒 = 𝑉𝐷
𝑅𝐷

      (dBm/cm)                         (3) 

where VD is vector distance and RD is real geometric distance. 
The slopes, intercepts, and the fitted standard deviation with 
respect to the linear regression of the distribution of points in 
Fig. 5 based on different radii are reported in Fig. 6 for MD, 
ED, and q = ∞. For the Origin we just considered radii from 
1cm to 200cm since there is no point beyond 200cm distance 
for the Origin. 

The first point we notice in Fig. 6 is that even for very close 
points the variation of vector distance is considerable. This is 
explained mostly by the random nature of electromagnetic 
propagation effects such as fading, shadowing and especially 
multipath. To the best of our knowledge, there seems not to be 
a propagation model that helps us in predicting the behaviour 
of the vector distance. Existing indoor path loss models are 
based on an ensemble average of signal strengths at radius r 
from an AP [12-14]. Taking the derivative of this does not give 
us any indication of the rate of change of signal strength to 
expect at radius r. 

 

Figure 4.  Different neighbourhood for one point defined by circles with 
radius from 1cm to 400cm (just four circles are shown) 



 

Figure 5.  The variation of the ED over geometric distance between the 
Origin and the RPs inside the different radii of the circles. Linear regressions 

are shown when different radii are chosen. 

 

Figure 6.  The linear regression slopes (left), intercepts (right-up), and fitted 
standrad deviation with respect to linear regression (right-down) at the Origin 

for different radii of the circles from 1cm to 200cm. 

In addition to what is explained above, Fig. 6 shows that 
the slope decreases with increasing the radius of circles around 
the Origin. Regarding (3), the fact is that although the 
variations of received vector distance between two points are 
large, when the distance is greatly increased i.e. by 200 times, 
the slope of lines is decreased. As such for a small circle with 
radius of 1cm the slope is 9.25dBm/cm, 4.14dBm/cm, and 
2.73dBm/cm while for a large circle with radius of 200cm the 
slope is 0.065dBm/cm and 0.031dBm/cm, and 0.022dBm/cm 
for MD, ED, and q = ∞). Furthermore, Fig. 6 shows that by 
increasing the radius of circles, the intercept level of the 
experiment is increasing and its increasing rate is higher for 
smaller circles within 50cm.  

It can be also seen from this figure that using different 
vector distances when q=1, 2, ∞ leads to the same trends in 
slopes, intercepts, and fitted standard deviation, however MD 
results in higher values as expected from the earlier work. 
Using the infinity norm can decrease the high variation of 
vector distances between the points with short distances since 
the slopes and the intercepts are lower in this case compared to 
those in MD and ED. The fitted standard deviation results also 
confirm that the infinity norm of power differences is a better 
estimator. In fact, by comparing the results of using all q values 
we can have the best estimator of the vector distances over the 
real distances with respect to the linear regression when q is ∞. 

The mean value of the linear regression slopes, intercepts, 
and fitted standard deviation at different radii of the circles for 
all the points on the experiment is shown in Fig. 7. It can be 
realised that by increasing the radius of the circle the mean 
value of slopes decreases and for large radii the mean value 
becomes almost flat. However, by increasing the radius of 
circles, the mean value of intercepts is incrementing but with 
different rates for different q values. It is noticeable that the 
MD results in higher mean of slopes and intercepts than the 
other values of q when q≥ 1 (which can be also seen in Fig. 3) 
as such for a radius of 100cm the MD, ED, q = ∞ produces the 
mean slope of 0.1dBm/cm, 0.05dBm/cm, and 0.03dBm/cm, the 
mean intercept of around 7.19dBm, 3.43dBm and 2.45dBm 
and the mean fitted standard deviation of 3.16dBm, 1.50dBm, 
and 1.23dBm, which again confirms advantages of utilising q  
= ∞. 

In addition, the mean value of fitted standard deviation in 
the three cases shown demonstrates that by using the infinity 
norm, not only the calculations get simpler, but also the 
relationship between the points at short distances can be 
improved. It also shows that we can get a better estimation of 
the real distance based on the vector distance when considering 
the nearby points (less than 50cm distance), while the 
estimation gets worse by increasing the neighborhood area and 
including more distant points.  

 

Figure 7.  The mean of linear regression slopes (left), intercepts (right-up), 
and fitted standrad deviationd with respect to linear regression (right-down) at 

different radii of the circles for all of the points. 



IV. CONCLUSION AND FUTURE WORK 
Comparing the relationship between MD and ED over the 

geometric distance between points in a fingerprint database 
leads us to further investigate using other vector distance 
measures based on (1). The results show that the infinity norm 
of power differences seems to be a better estimator since its 
standard deviation with respect to the linear regression is 
minimum. It also simplifies (1) to (3) which is much easier to 
use and has less complexity in the calculations. 

Short-distance fingerprint analysis using different vector 
distances is investigated by a new method since the positioning 
algorithms tend to match to nearest neighbors. The presence of 
walls in an indoor environment also makes the nearest RPs 
more influential. We find that even at short distances, variation 
due to fading is significant. This is explained mostly by 
random nature of electromagnetic propagation effects such as 
fading, shadowing and especially multipath. Wi-Fi signals have 
short wavelengths (12cm), so short-distance variation due to 
fading is more serious. However, using another vector distance 
measure (q = ∞ or infinity norm of power differences) instead 
of MD or ED can help decrease the vector distance variance 
over the real distance and improve the relationship between the 
points in short distances. Therefore, we expect several-nearest-
neighbor algorithms can be able to supply reasonable results 
and better positioning results with less error can be obtained at 
the end, which is an issue to work on in future. The effect of 
using different numbers of APs is also of interest as well. 

The existing propagation models cannot help us predict the 
behavior of the vector distance since they are based on an 
ensemble average of signal strengths at radius r from an AP. 
Taking the derivative of this does not give us any indication of 
the rate of change of the signal strength to expect at radius r. 
Developing the signal strength model for fingerprinting can 
help in improving the positioning accuracy. 
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