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Abstract—Across the spectrum of known algorithm for position 
estimation there is no favorite method. Some algorithms require 
intensive computation capabilities, while other algorithms could 
be implemented in devices with limited resources such as sensor 
nodes. In this paper an approach for solving nonlinear problems 
on the example of multilateration is presented in both cases with 
and without over determination. Thereby neither approximation, 
nor iterative solutions are used. In the proposed method, the 
nonlinear elements of the equations system are treated as 
additional unknowns, which represent simultaneously a 
constraint. Thus a new equations system is created, which is 
solved by mean of linear algebra methods with low 
computational complexity. The algorithm was implemented and 
tested in conjunction with a developed UWB indoor positioning 
system. 

Index Terms—Localization, Trilateration, Multilateration, non 
linear least square, Ultra Wide Band (UWB), sensor networks 
 

I. INTRODUCTION  
The calculation of the spatial coordinates of unknown 

points from its distances to other known points is a common 
operation, known as multilateration. In recent years numerous 
studies on the solution of the multilateration range equation 
have been published. As an example, we can refer to [1] and 
[2] which listed a number of procedures and presented an 
algebraic approach. This paper shows an alternative method for 
solving the multilateration range equation with low 
computational complexity. The algorithm was first published 
by the author in German language [3]. In this contribution the 
algorithm is applied to real measurement data of an UWB 
indoor positioning system.  

The suggested method is described in section II in the case 
of the trilateration problem. In section III the algorithm is 
extended to the multilateration problem based on range 
measurements to more than three reference points. 
Subsequently, as shown in section III, by using a recursive 
least square approach additional range measurements can be 
added gradually to lead to a balanced solution. In section IV 
two examples illustrate the application of the algorithm in 
conjunction with real measurement data.   

II. SOLUTION BASED ON THREE REFERENCE POINTS 
Given are the three reference points P1(x1, y1, z1), P2(x2, 

y2, z2), P3(x3, y3, z3) and the range measurements s1, s2 and 
s3 to the point N (cf. Fig.1). The determination of the 

coordinates (x, y, z) of the point N is equivalent to finding the 
solutions to the following system of quadratic equations.  
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(1) can be arranged as: 
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Or in matrix representation: 
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Thus, (3) is represented in the known form 
A =⋅0 0x b    (4) 

With the constraint: x ∈ E    
Where ( ){ }4 2 2 2

0 1 2 3 0 1 2 3/TE = x ,x ,x ,x x = x + x + x∈  

A. Solution of the equation system (4) 
Case 1: P1, P2 and P3 do not lie on a straight line.  
Then Rang(A0)=3 and dim(Kern(A0))=1.  

 
Figure 1:  Trilateration problem 
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The general solution of (4) is then  
= +t ⋅p hx x x   (5) 

With the real parameter t. Where xp is a particular solution of 
(4) and xh is a solution of the homogeneous system A0.x=0  
i.e.  xh is a Basis of Kern(A0).  
The vectors xp and xh can be computed using the Gaussian 
elimination method. The particular solution xp can also be 
determined using the pseudo inverse of the matrix A0. The 
pseudo-inverse gives the solution with the minimum norm [4]. 
Determination of the parameter t: 
Let ( )Tp0 p1 p2 p3= x ,x ,x ,xpx , ( )Th0 h1 h2 h3= x ,x ,x ,xhx  and 

( )0 1 2 3
T= x ,x ,x ,xx  

When inserted into (5) then it becomes: 
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By using the constraint x ∈ E   it follows: 
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The solutions of the equation system (4) are: 
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If the multilateration problem cannot be solved (too short 
distances), so there are no real solutions. In this case, the real 
part is used as an approximation for the solution. With this 
approximation, the constraint x1/2 ∈ E   is not met. Thus the 
difference: 

( )2 2 2
0 1 2 3d = x x + x + x−              (10) 

 
is a measure of the solvability of the multilateration problem, 
where x0 ,  x1  ,  x2 and x3 the coordinates of the solution x of 
(4).  
Solutions of the multilateration problem are the points: 

1N = I⋅1x and 2N = I⋅2x , where 
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 =
 
 
 

 

 
Case 2: P1, P2 and P3 lie on a straight line.  
Then Rang(A0)=2 and dim(Kern(A0))=2. The general solution 
of (4) is then  

= +t +k⋅ ⋅p h1 h2x x x x   (11) 
With real parameters t and k 
xp is a particular solution of (4) and xh1 and xh2 are two  
solutions of the homogeneous system A0.x=0 .  They are 
linearly independent solutions and form therefore a basis of 
Kern(A0). Since there is only one constraint equation, the 
multilateration problem has infinitely many solutions.  

III. SOLUTION BASED ON MORE THAN THREE REFERENCE 
POINTS 

With additional distances s4, s5 …. sn to the reference 
points P4, P5 … Pn , (3) can be extend as follows:  
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That means in the known form 
A =⋅ x b               (13) 

 
With the constraint x ∈ E. The solution x̂  of (13) in the sense 
of least squares method is: 

( ) 1
ˆ T T= A A A

−
x b  (14) 

The projection of p on the column space of A is:  

( ) 1T T= A A A A
−

p b  (15) 

The coordinates of p on the column space Col(A) represent the 
solution  x̂  

To note is that all elements in matrix L = (ATA)-1AT are 
derived from reference points coordinates only. Moreover, 
vector b consists of distances between the unknown point N 
and all the reference points. Especially in static sensor 
networks the computation of the entire localization can be 
accomplished in the nodes themselves, since the computation 
is restricted to a matrix vector multiplication of matrix L and 
vector b.  

If, however, the measurements are uncorrelated but have 
different uncertainties, the Weighted Least Square (WLS) is 
used [5]. The solution x̂  is given by the following equation: 
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Figure 2: Mobile station with attached WLAN bridge 

( ) 11 1ˆ T T= A V A A V
−− −x b   (16) 

V is the covariance matrix of random errors. 
Since the solution should also belong to E, and because E 

does not form a vector space, a closed formula for the 
projection of p on Col(A) ∩ E is not given. Thus only 
candidates for approximate solutions are selected. The 
solution candidate N, which minimizes the error square sum 
(17) is then chosen 

      

( ) ( ){ }2 22 2
1 1min n nN

N P s N P s− − + + − −

 (17) 

 
 

First candidate:  
Equation (13) is solved using (14) or (16). 

 
Further candidates by using the recursive least square: 

First the non over determined system of equations (4) have 
to be solved. Since (4) has two solutions, the solution which is 
closer to the first candidate is selected. This solution is used as 
a starting point for the Recursive Least Square (RLS) [5]. Let 
x0 be the initial solution. By every incoming distance, x0 is 
updated in x1 by using RLS.   

The approach enables a simultaneous execution of distance 
measurement and positioning calculation. Hence a position 
assignment can be started, although not all distances are 
available. Thereby unnecessary waiting time is avoided and 
the positioning calculation is speed up. 

IV. NUMERICAL EXAMPLES 
To test the numerical method, distance measurements in a 

specially created test field at the University Institute were 
performed using a UWB Indoor Local Positioning System 
(UWB-ILPS). The main hardware components of UWB-ILPS 
are Time Domain PulsON 210 UWB Radios [6]. Fig. 2 shows 
the mobile station. Distance measurement between the stations 
takes place via UWB, communication and control is via 
WLAN. For more details on UWB-ILPS, please refer to [7] 
and [8].  

Fig. 3 demonstrates the location of the reference stations as 
well as the mobile station located on points P36 and P38 , 
where the x-axis points to north direction, y-axis to east 
direction and z-axis points down to the center of earth. 

A. Solution based on three reference points: 
The coordinates of three reference points and the measured 

distances to the point P36 are listed in Table I. The true 
coordinate of the unknown point are  
P36  =  (24,335 ;  -2,506 ; 1,130).  
The particular solution of (4) and the solution of the 
homogeneous system are respectively: 
xp  = (0,0000 ; 13,2890 ; -13,4807 ; -35,9246)  and  
xh  = (0,9977 ; 0.0183 ; 0,0188 ; 0,0623) 

The general solution of (4) is x = xp + t xh , where t is the 
solution of the quadratic equation (7): 

( )2(0,00457...) 5,5087... 1658,74... 0t + t + =⋅ − ⋅  

In this case t1 = -603,2647 and t2 = -601,1773. (4) has then the 
following solutions:                      
x1 = (601,8863 ; 24,3506 ; −2,4811 ; 1,6667)T  and                 
x2  = (599,8010  ;  24,3123  ;  −2,5205  ;  1,5365)T  

The corresponding differences according to (10) are 
d1=d2=0. The small size of the differences confirmed the 
solvability of the problem.  

The solutions of the multilateration problem are in meter:  
N1 =  (24,3506 ; −2,4811 ; 1,6667) and  
N2 = (24,3123 ; −2,5205 ; 1,5365) 

TABLE I.   DISTANCE MEASUREMENTS TO THREE REFERENCE POINTS 

Reference 
points 

X[m] Y [m] Z [m] dmeasured 

[m] 
dtrue [m] dtrue - 

dmeasured 
[cm] 

P37 27,297 -4,953 1,470 3,851 3,857 0,6 

P331 25,475 -6,124 2,360 3,875 3,988 -11,3 

P102 22,590 0,524 1,200 3,514 3,497 -1,7 

 

 
Figure 3:  Test field at the Geodetic Institute (2nd floor) 
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B. Solution based on more than three reference points: 
The coordinates of six reference points and the measured 

distances to the point P38 are listed in Table II. The true 
coordinate of the mobile station are 
P38  =  (26,7590 ; -1,342 ; 1,130)  

The first three distances provide the following solutions:  
x01 = (720,6931 ;  26,7726 ;  −1,3389 ; 1,4584) and 
x02 = (716,7319 ;  26,7234 ;  −1,4152 ; 0,7685) 

The starting value for the RLS is taken from the x01 and x02 
solution that is compatible to the fourth distance (distance to 
P43), in this case x0 = x01 

Furthermore it can be shown from the location of the 
solutions that the lines to the points P43 and P208 run through 
walls and therefore the distances to these points have to be 
corrected according to UWB wave excess delay estimation 
equation proposed in  [9]. The calculated delays are in this 
case 12 cm and 14 cm respectively.    
By using the RLS we get the following solutions:  

x0 = (720,6931 ; 26,7726 ; −1,3389 ; 1,4584) 
x1 = (720,6933 ; 26,7659 ; −1,3377 ; 1,4576) 
x2 = (720,6934 ; 26,7680 ; −1,3267 ; 1,4564) 
x3 = (720,6877 ; 26,7629 ; −1,3189 ; 1,5005) 

 
Table III shows the difference d and the sum of squares by 
using (10) and (17) respectively 
The solution which minimizes the error square sum is x01. 
Therefore The solution of the multilateration problem is the 
point N = (26,7726 ;  -1,3389 ; 1,4584) 

C. Computational efficiency 
Generally for indoor positioning, the limited number of 

participating reference stations doesn’t cause a big challenge 
to the computational resource for multilateration. However, 
for example, in the case of a sensor network node, every 
reduction in the computation time can lead to an increase in 
battery lifetime.  
The computational efficiency of the algorithm is compared to 
the Gauss–Newton algorithm (GNA) applied on (1). The 
results indicate that the average execution of the proposed 
algorithm is significantly faster than GNA. However the 
convergence of GNA depends on the start solution. Assuming 
that the point N is within the reference point’s volume, the test 
field center is selected as start solution for GNA. For 
comparison, the execution time of the algorithm based on the 
last numerical example average to 1.9 µs while GNA needs 18 
µs. To note the evaluation is based on the execution time 
performed with MATLAB on a 2.53 GHz dual-core PC.   
 

V. CONCLUSION 
In this contribution, an alternative solution for the 

multilateration problem, with and without over determination, 

is proposed. Thereby neither approximation, nor iterative 
solutions are used. The algorithm is based on linear algebraic 
method, has low computational complexity and can be 
applicable to real-time applications and in wireless sensor 
nodes. The measurement results performed with our UWB 
positioning system show that the algorithm is highly effective 
and has low estimation error. However the raging update rate 
of the used UWB transceivers is relatively low, and doesn’t 
permit to test the algorithm by moving objects. Therefore 
further works consist of the expansion of the positioning 
algorithm, regarding kinematic scenarios. 
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TABLE III.  CALCULATED DIFFERENCES AND SUM OF SQUARES  

Solutions x01 x02 x1 x2 x3 

Difference d [m2] 0 0 0,37 0,29 0,44 

Error square sum [m2] 0,0421 0,1246 0,0485 0,0432 0,0537 

 

TABLE II.  DISTANCE MEASUREMENTS TO SIX REFERENCE POINTS 

Reference 
points 

X[m] Y [m] Z [m] dmeasured 

[m] 
dtrue 

[m] 
dtrue - 

dmeasured 
[cm] 

P37 27,297 -4,953 1,470 3,652 3,666 1,47  

P31 20,693 -4.849 1,93 7,036 7,052 1,63  

P102 22,590 0,524 1,200 4,586 4,568 1,79 

P43 17,113 -3,003 2,17 9,960 9,843 11,69 

P208 22,554  4,727 1,77 7,542 7,411 13,09 

P101 22,45 -7,880 1,6 7,883 7,846 3,7 
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