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Abstract—A Bayesian method for dynamical off-line estimation
of the position and path loss model parameters of a WLAN
access point is presented. Two versions of three different on-line
positioning methods are tested using real data. The tests show
that the methods that use the estimated path loss parameter
distributions with finite precisions outperform the methods that
only use point estimates for the path loss parameters. They also
outperform the coverage area based positioning method and are
comparable in accuracy with the fingerprinting method. Taking
the uncertainties into account is computationally demanding, but
the Gauss–Newton optimization method is shown to provide a
good approximation with computational load that is reasonable
for many real-time solutions.

indoor positioning; received signal strength; WLAN; path loss

model; statistical estimation

I. INTRODUCTION

This article focuses on navigation in indoor spaces, where
satellite-based navigation information is typically unavailable.
Wireless local area networks (WLAN) have been shown to be
a platform for efficient low-cost indoor positioning, which is
accessible by an increasing portion of all the mobile devices.
Indoor positioning performance of WLAN-based methods can
be improved by introducing more refined technologies such as
various inertial navigation systems or Bluetooth [1]. However,
the need for reliable WLAN-based positioning remains clear.

There are several ways to exploit WLAN signals for indoor
navigation. Due to the multiplicity of the positioning environ-
ment, signal propagation modeling tends to be challenging:
for instance, walls, floors, furniture and the shape of the
building cause shadowing and multipath effects that cannot
be modeled accurately without the knowledge of the floor
plan of the building. The effect may also be varying in time.
However, there is statistical correlation between the position
and some signal properties. In the literature, most statistical
methods are based on the Signal-to-Noise-Ratio (SNR) or the
Received Signal Strength (RSS) measurements [2]. Article [3]
uses statistical coverage area estimates. This paper uses RSSs
as distance measurements.

A path loss (PL) model is a model for signal attenuation
in space. In the literature, for example in [4] and [5], there

are many different path loss modeling methods from de-
terministic and computationally heavy ray-tracing algorithms
to empirical and semi-empirical channel models based on
extensive measurement campaigns. Each model contains a set
of tunable parameters which attempt to capture the nature of
the investigated radio propagation environment.

The main novelty of this article comes from introducing
a method for dynamic estimation of the model parameters
for each access point (AP) using learning data collected
at known positions. The underlying model is the simplified
statistical path loss model. Estimation is based on the concepts
of Bayesian statistics, which is a flexible and theoretically
principled framework. The number of required path loss pa-
rameters is kept small in order to keep down the computational
complexity and the amount of information required in the
positioning phase. As a very important built-in property, the
presented Bayesian method returns also a statistical description
of the uncertainty for estimated parameter values.

Furthermore, this article shows the influence of finite PL
parameter precisions on the positioning results. The proposed
positioning algorithms are Monte Carlo -based Metropolis–
Hastings (MH) sampler and computationally lighter Gauss–
Newton method (GN). Grid positioning is used as a reference
method. For each of the methods, two versions are compared.
The first one uses point estimates for the path loss parameters
and assumes them to be accurate. The second version assumes
the parameters to follow specified probability distributions.
Using collected sets of real data, the latter is shown to be
superior in consistency and similar or slightly better in accu-
racy. The latter also outperforms the coverage area solution,
which does not use RSS measurements. Its accuracy is also
comparable with the fingerprinting method, in which the RSS
report is pattern-matched with the entire learning set.

In practice WLAN positioning is typically complemented by
additional, more refined techniques such as map information,
inertial navigation systems and Bluetooth. In this paper, we
do not use additional information or other measurements.
However, additional information and other measurements are
easy to add to presented positioning algorithms.

The paper is organized as follows: First, in Section II the
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path loss model is introduced and the method for estimating
the model parameters is presented. Then, in Section III the path
loss model is formulated as a statistical measurement model
for the positioning phase, and the positioning algorithms are
presented in Section IV. The results are shown in Section V.
Finally, Section VI shows the conclusions.

Notations: Matrices are denoted with unitalicised uppercase
letters. Vectors and scalars are not distinguished. N(m,P)
refers to the (multivariate) normal distribution with mean m

and covariance matrix P, and Nm
P (x) refers to its probability

density function (pdf) evaluated at x.

II. PATH LOSS MODEL

A. Path loss model input

This sections presents a method for estimating the path loss
parameters and location for a single AP. This procedure is then
applied to each AP in the learning data. The assumption that
the parameters of separate APs are statistically independent
may result in some information losses, but it will simplify the
form the AP database that is created and reduce the number
of recorded statistics.

The input for the parameter estimation procedure is a set
of RSS measurements of signals transmitted by the AP. The
measurement set Ω includes Nfp measurements given as

Ω ∈ {(xi, Pi) | i = 1, 2, . . . , Nfp} , (1)

where xi ∈ R
2 includes the easting and northing of the i:th

measurement point, and Pi is the received signal power of the
i:th measurement point in dBm. We assume that the transmitter
power and antenna gains are fixed during the measurements, so
the RSS is only dependent on the measurement coordinates xi.
In this paper, we use only 2-dimensional coordinates, since in
many positioning applications this is enough to fulfill the use
case expectations. Extensions to 3D cases are under research.

B. Path loss model definition

Friis’s law determines the received signal power as a func-
tion of distance in a free space as

prx(d) = ptxgtxgrx

(

λ

4πd

)2

, (2)

where ptx, gtx, grx, and λ are the transmitted signal power,
transmitter antenna gain, receiver antenna gain, and signal
wavelength, respectively. The distance between transmitter and
receiver antenna is d. The square term is the actual channel
dependent path loss term, while the other parameters are
transmitter and receiver dependent. However, using the free-
space model could be a practical approach only in line-of-
sight scenarios, but not in real-life networks where there are
obstacles on the radio signal path.

One of the most recognized outdoor path loss models is the
classical log-distance model (or power law model) [6]. This
model has also been applied in indoor positioning e.g. in [7]
and in [8] that uses separate model parameters depending on

the RSS value. In the log-distance model the received signal
power is defined as

Prx(d) = Prx(d0)− 10n log10

(

d

d0

)

+ w (3)

where the power Prx(·) is given in logarithmic scale, d0 is
a reference distance, n is a path loss exponent, and w ∼
N(0, σ2) is a normally distributed random variable which
models the slow fading (shadowing) phenomenon. Here the
path loss exponent n and the slow fading standard deviation
are dependent on the local propagation environment. Notice
that since the term Prx(d0) indicates the received signal power
at the reference distance d0, it automatically takes account
of the transmission power along with the antenna gains and
wavelength shown in (2). Moreover, apart from the slow
fading, Prx(d) is only affected by the path loss exponent n
whenever d > d0. Now, by defining d0 = 1m, and denoting
Prx(d0) = A, it is possible to write the final path loss model
as

Prx(d) = A− 10n log10 (d) + w, (4)

where the parameter A is referred to as apparent transmis-
sion power. Note that each AP will have different path loss
parameters.

C. Estimation of AP position and path loss parameters

AP position and path loss parameters for a single AP are es-
timated using the Iterative Reweighted Least Squares method
(Gauss–Newton method). The function to be minimized is

φ(A, n,m) =

Nfp
∑

i=1

∣

∣

∣

∣Pi − hi
est(A, n,m)

∣

∣

∣

∣

2
, (5)

where

hi
est(A, n,m) = A− 10n log10(||m− xi||).

A is apparent transmission power, n path loss exponent and m

BS position. The Jacobian matrix of the measurement model
function hi

est is

J =













1 −10 log10(||m− x1||) − 10
ln(10)n

(m−x1)
T

||m−x1||
2

...
...

...

1 −10 log10(
∣

∣

∣

∣m− xNfp

∣

∣

∣

∣) − 10
ln(10)n

(m−xNfp)
T

||m−xNfp ||
2













.

(6)

The Bayesian Gauss–Newton algorithm is described in detail
in Algorithm 3.

To improve convergence properties of the Gauss–Newton
algorithm, all the quantities are given an almost uninformative
Gaussian prior, i.e. a Gaussian distribution with so large
variance that the influence on the optimum is negligible. A
suitable initial value for the AP position is the position of
the strongest observed measurement, because otherwise the
algorithm might locate the AP position to the area of the
weakest RSSs. Initial values for A and n can be chosen
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more arbitrarily from the valid ranges, since the distribution
is typically unimodal, if the number of data points is large.

Note that the algorithm also returns an approximation
for the covariance matrix of each quantity. Consequently,
we are potentially able to distinguish between trustworthy
and untrustworthy path loss models. In the Bayesian sense,
the algorithm tries to estimate the MAP value (maximum a

posteriori), and the covariance matrix is the covariance of the
linearized model.

In an ideal case without any slow fading variations the AP
position would be found at the coordinate point where the
received signal power reaches its maximum value. However,
in practice there might be several clear peaks in the received
signal power map or there might not be enough measurements
to find even a single peak. Besides, the AP might not even be
located inside the measured power map.

The effects due to measurement error correlations are taken
into account heuristically by increasing the covariance matrix
of the AP position artificially with a small constant diag-
onal matrix. For this reason and for reducing the number
of recorded parameters, the cross-covariances of APs and
path loss parameters are ignored. AP positions and path loss
parameters are thus assumed to be uncorrelated. Fig. 1 shows
power maps (interpolated between the measurement points)
of two separate APs, and the resulting AP position estimates
along with the covariance ellipse.

As pointed out before, path loss exponent n and the slow
fading standard deviation are highly dependent on the radio
propagation environment. For example, in a shadowed urban
cellular radio network the typical values of n and σ are varying
around n = 0.1 − 4 and σ = 1 − 6 dBm, respectively [5, 9].
Examples of resulted path loss model curves can be found in
Fig. 2, in which the path loss models are computed for the
same APs that were previously show in Fig. 1.

III. ESTIMATION THEORY

A. Bayesian filtering equations

Consider the Gaussian system

xk+1 = Φxk + wk

yk = h(xk, a) + vk,
(7)

where yk ∈ R
Nyk is the vector of observations at time instant

tk, xk ∈ R
Nx represents the state of the system at tk and

a ∈ R
Na represents nuisance parameters that have prior distri-

bution p(a). The motion model is linear and independent of the
nuisance parameters. The random noise terms wk ∼ N(0,Qk)
and vk ∼ N(0,Rk) are assumed to be mutually independent
and independent of state x and parameter vector a. Matrix
Φ ∈ R

Nx×Nx is state transition matrix.
By the Chapman–Kolmogorov equation, the prior distribu-

tion of the state at time instant k is

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|y1:k−1) dxk−1. (8)

This is the prediction step of a Bayesian filter.
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Figure 1. Power maps of two separate APs and the AP position estimates along
with covariance ellipses. The color indicates the interpolated RSS power map
in dBm.

We assume that the estimate of parameter vector a is not
modified online, so it is approximated that the distribution
of a remains unaffected by the data that is received in the
positioning phase, i.e. p(a|x1:k, y1:k) ≈ p(a). By Bayes’ rule,
the posterior pdf of the state is thus

p(xk|y1:k) =

∫

p(xk, a|y1:k) da

=

∫

p(yk|a, xk)p(xk, a|y1:k−1) da
∫ ∫

p(yk|a, xk)p(xk, a|y1:k−1) da dxk

≈

∫

p(yk|a, xk)p(a)p(xk|y1:k−1) da
∫ ∫

p(yk|a, xk)p(a)p(xk|y1:k−1) da dxk

.

(9)

This is the update step of the Bayesian filter with unknown
static nuisance parameters in the measurement model.

The filtering technique used in this paper is an approx-
imation of the general Bayesian filtering procedures. The
presented positioning algorithms are formulated so that they
return the posterior mean x̂+

k and covariance matrix Σ̂+
k of the

user position. The posterior distribution is then approximated
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Figure 2. Path loss curves for two separate APs.

by a normal distribution with the estimated parameter values.
Using this simplification and linear motion model with additive
Gaussian noise, the filter prediction step (8) becomes

p(xk|y1:k−1) = N
Φx̂

+

k−1

ΦΣ̂+

k−1
ΦT+Q

(xk), (10)

where

Φ = I2×2, Q ∝ (∆t)2 · I2×2.

This approximation is done in order to simplify the prediction
step of the filter, which is now the conventional Kalman filter
prediction. Note that this procedure may result in information
losses especially in case of multimodal posterior.

B. Path loss model

The path loss model with uncertain parameters presented in
Section II is a special case of model (7). In this case, yk is
the vector of RSS measurements yk =

[

P1 . . . PNP

]T
at

time instant tk and xk is the user position. Parameter vector
a contains the path loss model parameters of all the possible

APs, but the measurement contains information only on the
observed APs, so the parameter vector can be denoted by

a =
[

A1 n1 mT
1 · · · ANP

nNP
mT

NP

]T
.

The measurement model function is

h(x, a) =







A1 − 10n1 log10(||m1 − x||)
...

ANP
− 10nNP

log10(||mNP
− x||)






,

where NP is the number of observed APs. Measurement
noise covariance matrix is R = σ2 · INP×NP

. Note that
because the path loss parameters of an AP are isotropic,
p(a|xk) = p(a). For simplicity, this paper assumes that the
path loss parameters’ prior distributions are Gaussian and
that AP position and PL parameters are independent a priori.
Thus,

p(a) = p(A1:NP
, n1:NP

,m1:NP
)

=

NP
∏

i=1

N
µ̂Ai,ni

Σ̂Ai,ni

([

Ai

ni

])

· Nm̂i

Σ̂mi

(mi),
(11)

where the parameters µ̂Ai,ni
=

[

Âi n̂i

]T
, Σ̂Ai,ni

, m̂i and
Σ̂mi

are estimated from the learning data using the Gauss–
Newton algorithm.

The priors are modeled to be normal, since the Gauss–
Newton algorithm requires this in its basic form and the
normal pdf of A and n is the conjugate prior of the likelihood.
However, other prior distribution families such as Student’s t-
distribution could also be studied.

IV. POSITIONING ALGORITHMS

In this section, a Gaussian prior distribution for the user
position p(x) = pxk|y1:k−1

(x) = Nx̂

Σ̂
(x) is assumed.

A. Grid method

By (9), the posterior pdf value at point x is

p(x|P1:NP
) ∝

NP
∏

i=1

∫∫∫

p(Pi|x,Ai, ni,mi)p(Ai, ni)p(mi)

dAi dni dmi · p(x),
(12)

which can be approximated using standard Monte Carlo inte-
gration. The grid method is presented in Algorithm 1.

The most crucial implementation issues are the Monte Carlo
sample size parameter N as well as grid size and density.
Note that combining of the likelihood of each AP is done in
logarithmic space to avoid numerical underflows.

B. Metropolis–Hastings method

The Metropolis–Hastings (MH) sampler generates Monte
Carlo samples from an arbitrary posterior distribution of a
multivariate random variable. It is an iterative algorithm that
can be proved to converge towards the target distribution.
The posterior mean and covariance can then be approximated
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Algorithm 1 Grid with Monte Carlo Integration

1) Set a grid {xm ∈ R
2 | m ∈ {1, . . . , Nm}} that covers

most of the prior probability mass.
2) For each heard base station i = 1, . . . , NP , draw

[

A
(k)
i

n
(k)
i

]

← N

([

Âi

n̂i

]

, Σ̂Ai,ni

)

m
(k)
i ← N

(

m̂i, Σ̂mi

)

for k = 1, . . . , N .
3) At each grid point xm compute for each AP i =

1, . . . , NP and for each each sample k = 1, . . . , N

I
(k)
i,m := NPi

σ2

(

A
(k)
i − 10n

(k)
i log10

(∣

∣

∣

∣

∣

∣
m

(k)
i − xm

∣

∣

∣

∣

∣

∣

))

,

and Ii,m := 1
N

∑N
k=1 I

(k)
i,m. Then set

ℓm := ln
(

Nx̂

Σ̂
(xm)

)

+

NP
∑

i=1

ln(Ii,m), Lm := exp(ℓm).

4) Normalize the grid to get a set of weights wm =
Lm∑nm

m=1
Lm

and compute mean and covariance estimates

x̂+ :=

Nm
∑

m=1

wmxm

Σ̂+ :=

Nm
∑

m=1

wm(xm − x̂+)(xm − x̂+)T.

by the sample mean and covariance of the sampled set. The
algorithm is presented in Algorithm 2.

The MH sampler uses a so-called proposal distribution,
from which it is straightforward to generate random numbers.
At each iteration of the algorithm, proposal values for the
estimated variables are drawn from the proposal distribution.
The proposal values are then accepted with the probability that
is proportional to the ratio of the pdf values of the proposal
value and the latest accepted value. [10, Ch. 5]

Note that

p(x,m1:NP
|P1:NP

)

(9)
∝

∫∫

p(P1:NP
|x,A1:NP

, n1:NP
,m1:NP

)

· p(A1:NP
, n1:NP

) dA1:NP
dn1:NP

· p(x) · p(m1:NP
)

∝ p(x)

NP
∏

i=1

p(mi) det(Σ̌Ai,ni
)

1
2 exp

(

1

2
µ̌T
Ai,ni

Σ̌−1
Ai,ni

µ̌Ai,ni

)

(13)

where

Σ̌Ai,ni
:=

(

1

σ2
Bi

TBi + Σ̂−1
Ai,ni

)−1

µ̌Ai,ni
:= Σ̌Ai,ni

(

1

σ2
Bi

TPi + Σ̂−1
Ai,ni

[

Âi

n̂i

])

,

where Bi =
[

1 −10 log10(||mi − x||)
]

. The simple form of
this formula enables analytical integration over PL parameters
A and n.

In the implementation phase, great care must be taken
when setting the proposal distributions to make the algorithm
converge in a computationally feasible number of iterations.
For convenience, the proposal distributions are chosen to be
multivariate normal with the latest accepted value as the mean
and the covariance matrices Px and Pmi

tuned from prior
covariances of x and m1:NP

.

Algorithm 2 Metropolis–Hastings algorithm

1) Set x(0) := x̂, A(0)
i := Âi, n

(0)
i := n̂i and m

(0)
i := m̂

(0)
i

for i = 1, . . . , NP . Set p(0) using the formulae in step 3.
Set k = 1.

2) Generate x′(k) ← N(x(k−1),Px) , and for each AP i =

1, . . . , NP , generate m
′(k)
i ← N(m

(k)
i ,Pmi

).
3) For each i = 1, . . . , NP , compute B

(k)
i =

[

1 −10 log10

(∣

∣

∣

∣

∣

∣
m

′(k)
i − x′(k)

∣

∣

∣

∣

∣

∣

)]

and

Σ̌
(k)
Ai,ni

:=

(

1

σ2
B

(k)
i

T
B

(k)
i + Σ̂−1

Ai,ni

)−1

µ̌
(k)
Ai,ni

:= Σ̌
(k)
Ai,ni

(

1

σ2
B

(k)
i

T
Pi + Σ̂−1

Ai,ni

[

Âi

n̂i

])

p′(k) := ln
(

Nx̂

Σ̂
(x′(k))

)

+

NP
∑

i=1

[

1

2
ln
(

det(Σ̌
(k)
Ai,ni

)
)

+
1

2
µ̌
(k)
Ai,ni

T
Σ̌

(k)
Ai,ni

−1
µ̌
(k)
Ai,ni

+ ln
(

Nm̂i

Σ̂mi

(m
′(k)
i )

)

]

4) Set r := exp(p′(k) − p(k−1)). Generate u ← Uni(0, 1).
Compute

if r > u then

for i = 1 : NP do

m
(k)
i := m

′(k)
i

end for

x(k) := x′(k), p(k) := p′(k)

else

for i = 1 : NP do

m
(k)
i := m

(k−1)
i

end for

x(k) := x(k−1), p(k) := p(k−1)

end if

5) Set k := k + 1. If k < N , go to step 2. Otherwise, set

x̂+ :=
1

N

N
∑

k=1

x(k)

Σ̂+ :=
1

N

N
∑

k=1

(x(k) − x̂+)(x(k) − x̂+)T.
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C. Gauss–Newton method

With suitable measurement models, iterative state estimation
methods can be as accurate as any closed form solution but
simpler and easier to implement [11]. The Gauss–Newton
method, also known as the Iterative Reweighted Least Squares
method, is tested for positioning with the presented path loss
model. A similar kind of method is studied for positioning
in simulated cases in [12]. The detailed description is in
Algorithm 3.

The iteration does not converge globally, but including good
enough prior information and initial values usually prevents
the method from diverging. To improve convergence properties
further, the step length in the state-space is adaptive so that
the objective function value decreases at every iteration. As an
exception to this, the while loop is exited after a number of
iterations to ensure stability. The global convergence results
of the Gauss–Newton method with adaptive step length are
discussed in [13, 14].

For formulating the Jacobian matrix J that is needed in the
Gauss–Newton algorithm, the analytical partial derivatives of
the measurement function h are formed:

∂hi

∂x
=

10

ln(10)
ni

(mi − x)
T

||mi − x||
2 ,

∂hi

∂Ai

= 1,

∂hi

∂ni

= −10 log10(||mi − x||),
∂hi

∂mi

= −
10

ln(10)
ni

(mi − x)T

||mi − x||
2 .

The remaining partial derivatives are zeros. Note that the prior
covariance matrix is always full rank so the least-squares
estimation can be performed. The measurement covariance
matrix R is the diagonal matrix of the measurement variances.

In Algorithm 3 the complete state is denoted with z =

[

x

a

]

.

As in the PL parameter estimation phase, the output of the
algorithm contains estimates for the MAP and the covariance
matrix of the posterior of the linearized model.

D. Comparison methods

The presented methods are compared with two conventional
purely WLAN-based indoor positioning methods: statistical
coverage areas (CA) [3, 15] and the (weighted) k-nearest
neighbor algorithm (WKNN) [16].

The statistical CAs are bivariate Gaussian distributions that
are fitted to the fingerprint database. Since the product of
Gaussian densities is a Gaussian density, the standard Kalman
filte can be applied to filter these measurements.

In the WKNN method, the measurements are not com-
pressed into parametric form, i.e. no statistical assumptions
are made of the measurement model. Instead, the whole
measurement database is stored in the memory. In the po-
sitioning phase, the difference of the measurement to each
database point is computed using the Euclidean norm of
RSS differences, and the location estimate is set to the mean
value of three closest database points. The WKNN estimates
are not filtered in this paper, and the algorithm only uses
measurements of one time instant.

Algorithm 3 Gauss–Newton algorithm

1) Choose the stopping tolerance δ. Let

Σ̂z := blkdiag(Σ̂, Σ̂A1,n1
, Σ̂m1

, . . . , Σ̂ANP
,nNP

, Σ̂mNP
)

and

ẑ :=
[

x̂T Â1 n̂1 m̂T
1 . . . ÂNP n̂NP

m̂T
NP

]T

be the prior covariance and mean. Let the initial guess
be z0 := ẑ. Additionally, measurement covariance matrix
R is required. Set k := 0. Denote the objective function
with

θ(z) := (z − ẑ)TΣ̂z

−1
(z − ẑ) +

NP
∑

i=1

hi(z)− Pi

σ2
.

2) Compute the Jacobian

Jk :=









∂h1

∂x
∂h1

∂A1

∂h1

∂n1

∂h1

∂m1
0
T
4(NP−1)

...
. . .

...
∂hNP

∂x
0
T
4(NP−1)

∂hNP

∂ANP

∂hNP

∂nNP

∂hNP

∂mNP









.

3) Set

∆zk := −

(

Σ̂−1
z +

1

σ2
JTk Jk

)−1

·

(

Σ̂−1
z (zk − ẑ) +

1

σ2
JT(h(zk)− P )

)

.

4) Adapt step length:
α := 1
while ||θ(zk + α∆zk)|| ≥ ||θ(zk)|| and α > α0 do

α := α
2

end while

where α0 is a configuration parameter, e.g. 0.05. Set
zk+1 := zk + α∆zk.

5) If stopping condition ||∆zk|| < δ is not satisfied and
k ≤ kmax, increment k and repeat from Step 2. Otherwise

compute P :=
(

Σ̂−1
z + 1

σ2 J
T
k Jk

)−1

and set the state
estimate

x̂+ := zk+1,1:2, Σ̂+ := P1:2,1:2

V. POSITIONING TESTS WITH REAL DATA

A. Experiment setup

A measurement campaign was accomplished to evaluate the
performance of different algorithms in a real use case. First, a
large set of WLAN fingerprints was collected in public indoor
spaces in the city of Tampere, Finland for learning the ra-
diomap. The measured RSS values are based on the measured
Received Signal Code Power (RSCP) indicator reported by
the measurement device. Path loss model parameters were
estimated using the method that was presented in Section II of
this paper. Furthermore, statistical coverage areas (CA) were
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TABLE I. RESULTS FOR THE REAL DATA TESTS.

Solver Mean Med 95% err Cons Time
(m) (m) (m) (%) (s)

grid, N 7.2 5.6 18.7 88 84.67
grid, acc 7.4 5.9 19.8 80 34.04
MH, N 7.6 6.0 20.6 83 43.60
MH, acc 7.6 6.2 20.0 80 9.02
GN, N 6.9 5.6 18.3 91 1.33
GN, acc 6.9 5.2 20.8 64 0.34
CA 8.8 7.6 17.0 13 0.18
WKNN 5.7 4.8 11.1 29.12

fitted for each AP using the fingerprint database and Gaussian
distribution [3].

The test case presented in this paper is located in a building
at Tampere University of Technology campus area. The test
track and most of the learning data have been collected
indoors. The test track consists of several parts measured at
different floors of the same building. The measurement device
is a tablet computer, and the reference locations were set
manually on the floor plan figure. The correct floor is assumed
known in both learning and positioning phases.

B. Results and discussion

Fig. 3 shows position solutions for a part of the test track
given by both versions of the GN algorithm. The results of
the true data tests are in Table I and Table II. In Table II only
20% of the grid points in the learning data have been used for
every third AP. Abbreviation “N” stands for the algorithms that
assume the path loss parameters to be normally distributed
a priori whereas “acc” indicates that the parameter values
are assumed known. “CA” refers to the product of coverage
areas. “WKNN” is the k-Nearest Neighbor method with the
Euclidean distance.

The positioning error at one time step is the Euclidean dis-
tance of the position estimate and the corresponding reference
location. Columns “Mean”, “Med” and “95% err.” are mean
error, median error and empirical 95% percentile of errors
in meters. “Time” is the the average running time of our
MATLAB implementation in seconds. Note that the codes are
not highly optimized so the running time values have to be
considered only roughly indicative. The times are also highly
dependent on the chosen configuration parameters. Column
“Cons.” displays the 95% consistency that was determined
using Gaussian consistency test [17, pp. 235] with risk level
5%. The solver is deemed to be consistent at a certain time step
if the true position is within the 95%-ellipse of the posterior
distribution, assuming normality of the posterior. The closer
this number is to 95%, the more realistic the covariance matrix
estimation is.

In terms of the presented error statistics, the proposed RSS
methods seem to perform better than the coverage area solu-
tion but slightly worse than the WKNN solution in positioning
accuracy. Note, however that both Gauss–Newton solutions are
computationally much more efficient and the requirements for
the database are much lower for the parametric algorithms,
since only the PL parameter estimates and their variances have

TABLE II. RESULTS FOR THE REAL DATA TESTS. FOR EVERY SECOND
AP NINE OUT OF TEN LOCATION REPORTS HAVE BEEN REMOVED ARTI-
FICIALLY. THESE APS AND THE LEFT-OUT POINTS WERE CHOSEN RAN-
DOMLY.

Solver Mean Med 95% err Cons Time
(m) (m) (m) (%) (s)

grid, N 7.8 7.0 18.1 92 80.58
grid, acc 8.1 6.9 19.6 71 35.28
MH, N 7.7 6.9 19.8 81 41.65
MH, acc 8.2 7.6 19.2 70 8.77
GN, N 6.9 6.2 15.3 93 1.16
GN, acc 8.6 7.5 20.5 49 0.35
CA 9.6 8.3 18.1 11 0.18
WKNN 7.9 6.3 15.9 16.89
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Figure 3. Part of the test track with the GN method. In the upper figure
parameter uncertainties have been taken into account.

to be stored for each AP instead of all the measurement points.
Moreover, pruning the database influences the WKNN solution
much more than the statistical methods.

As shown by Table I, the presented “N” algorithms seem
to outperform “acc” algorithms slightly in the positioning
accuracy. However, the differences are clearer in Table II,
where the learning data sets of some the APs have been
pruned. Thus, it seems that PL parameter uncertainties should
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be taken into account especially if some of the APs are likely
to be badly mapped. This might be the case e.g. if there are
newly added APs or if the area as a whole is inadequately
covered by the database.

From the figures it can be seen that taking the parameter
uncertainties into account improves the consistency remark-
ably and independent of the estimation method. When several
types of measurements are combined, it is crucial to be
knowledgeable of the accuracy of each measurement, and so
the improvement in consistency is a good reason for taking
the parameter uncertainties into account in indoor positioning.

Among the three estimation methods, the grid and MH
sampler approach the exact Bayesian model posterior distri-
bution. The grid gives precise posterior values in the grid
points assuming that the Monte Carlo integration’s accuracy
is adequate. The MH sampler converges theoretically to the
true posterior as the sample size parameter N approaches
infinity. In practice, however, the rate of convergence in MH
algorithms is highly dependent on the form and parameters
of the proposal distributions. With the chosen configuration
the MH method provides an equally performing estimate as
the grid method with slightly lighter computation. Due to the
non-Gaussianity of e.g. many inertia-based indoor navigation
measurements, grid and Monte Carlo algorithms provide the
most natural framework for incorporating these measurements
into the filtering system.

The Gauss–Newton method lacks global convergence prop-
erties, and the covariance matrix estimate is based on iterative
linearization procedure and has thus a less clear Bayesian
interpretation. However, the presented results are comparable
with those of the other methods, and the GN is clearly the
computationally lightest one of the RSS algorithms and is
applicable in many real-time solutions.

VI. CONCLUSIONS

This article presented statistical methods for dynamic path
loss parameter estimation and positioning using received signal
strength measurements. According to the tests performed using
wireless LAN in indoor spaces, RSS positioning based on dy-
namically estimated PL parameters outperforms cell-ID-based
coverage area positioning and is comparable in accuracy with
the k-Nearest Neighbor method. The database requirements
of PL model methods are lighter that those of the k-Nearest
Neighbor method, and the PL model methods are less sensitive
to inadequate database coverage. It was also shown that taking
the parameter uncertainties into account in the positioning
phase improves positioning accuracy and especially consis-
tency of error estimates compared to the methods in which
the path loss parameters are assumed to be known accurately.
The differences are emphasized if some of the APs have been
estimated using pruned learning database. Furthermore, it was
shown that Gauss–Newton optimization algorithm provides
satisfactory accuracy and consistency compared with grid
and Metropolis–Hastings methods, being also computation-
ally feasible for many real-time applications. Adding other

sources of navigation information such as maps or inertia-
based information and showing the influence of the parameter
uncertainties in a hybrid positioning system is a topic for future
research.
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