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Abstract—A common approach of range-based indoor posi-
tioning methods use the received signal strength (RSS) of RF
packets from several anchor nodes to estimate their distances
to a mobile emitter with unknown position. The range-based
weighted centroid localization (WCL) approach with link quality
information (LQI) is known to be more accurate than range-
free centroid localization (CL) methods using only a binary
radio link information according to the cell of origin (COO)
principle. With the combining of redundant RF channels using
spatial and frequency diversity the WCL position estimation
is proved to be even more reliable, although the RSS-based
distance estimations of a single RF channel are known to be
error-prone in multipath indoor environments. A novel range-
free approach using the exact number of available diversity
channels — the link quantity information (L.Qnl) - is proposed. It
needs no more infrastructural effort or processing power and can
easily be applied to the range-based WCL estimation technique
with redundant sensor information. Especially the combining of
the redundant RSS-based distance estimations together with the
LQnl approach leads to a more accurate position estimation.
Experimental results in an office building and in a real-life
tracking application for maintenance staff in the underground
coal mining show the improvements of the additional range-free
approach.

Index Terms—Centroid Localization, Indoor Positioning, Link
Quantity Information, Received Signal Strength, RF Channel
Diversity.

I. INTRODUCTION

The reliable positioning of people and materials in heavy-
obstructed indoor environments is an ongoing and challeng-
ing research issue. Modern indoor local positioning systems
(ILPS) show a variety of applied sensor technologies [1].
Typical evaluation criteria for a taxonomy of an ILPS are
given in [2] together with the general characterization of an
ILPS. A suitable way to compare the taxonomy of different
systems is illustrated in Fig. 1. The main criteria are the ac-
cessible coverage and accuracy of the position estimations. An
overview of the latest positioning systems with a comparison
of their specific coordinate accuracy and coverage is given in
[3]. The coverage also contains the system’s performance in
non-line-of sight (NLOS) scenarios. The accuracy is defined
by the short-term position estimation error and the long-term
stability of the system. Of course, also the costs for installation
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and maintenance of the system infrastructure should be taken
into account.

The coverage of directional sensors like infra-red (IR) [4],
ultrasound [5] or optical systems [1] is limited to line-of-sight
(LOS) scenarios. Systems with artificial quasi static magnetic
fields are more robust in multipath environments, although the
high power consumption of coil-based artificial magnetic fields
limits the application range [6].
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Fig. 1. Taxonomy of localization systems.

Due to the latest advances in micro-electro-mechanical
systems (MEMS), the use of a miniaturized inertial navigation
system (INS) using a MEMS-based inertial measurement unit
(IMU) seems interesting for an ILPS. The main drawback of
IMU-based systems is the limited long-term stability due to
error propagation of the direction and distance measurements.

Range-based systems with an evaluation of the received
signal strength (RSS) of narrow-band RF signals might also be
used for obstructed environments with many NLOS conditions,
although they are known to be error-prone in multipath envi-
ronments [7],[8]. Nevertheless, RSS-based distance estimation
techniques put low demand on the hardware and software
complexity of the infrastructure components and thus, are
widely distributed. E.g. the WLAN-based Horus system [9],
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RADAR system [10] or the commercial Ekahau location
engine use RSS measurements. As shown in the taxonomy
in Fig. 1, different approaches might have complementary
characteristics looking at some of the criteria. In contrast
to IMU-based systems, RSS shows no error propagation
between two measurements and thus, the long-term stability
of the accuracy is not an issue. Otherwise, in indoor fading
environments, an IMU-based system can reach a better short-
term position accuracy than RSS-based systems. In general,
range-based systems like RSS are more accurate than range-
free systems like the COO technique.

Hybrid localization systems with a sensor fusion of different
types of sensors may overcome the specific drawbacks of a
single system [5]. The fusion of RF-based systems with an
INS is a common solution which offers both, a good short-term
accuracy and a good long-term stability [11]. Of course, the
improvements need additional hardware and software efforts.
The proposed localization system uses a different approach
where the combining of a range-free and range-based centroid
localization system leads to more precise position estimates
without any additional hardware or software efforts.

In section II, related range-based centroid localization ap-
proaches using single and redundant RSS measurements are
compared. The basic range-free centroid localization is pre-
sented in section III together with a proposed enhancement
for redundant radio links. In section IV, we propose a hybrid
centroid localization approach which uses redundant range
measurements and an additional range-free approach. In sec-
tion V, the localization system performance is validated by
experimental results of a dynamic measurement on a motion
test track. In the last section VI, the results are discussed
and investigated in terms of an outlook for further system
developments.

II. RANGE-BASED CENTROID LOCALIZATION
A. Weighted Centroid Localization (WCL) using RSS Readings

The general weighted centroid localization (WCL) approach
uses a link quality indicator (LQI) to get a more precise
location information [12]. RSS readings are a common LQI
which can also be used for distance estimations. According to
the Log-distance model the distance dependent average path
loss of RF signals is given with

PL(d) = PL(dp) + 10nlog (j) , (1)
0
where PL(d) is the average path loss over a distance d in dBm,
PL(dy) is the reference path loss over a reference distance d
and n is the environment-specific propagation coefficient.
The value of PL(dp) is influenced by the effective ra-
diated power (ERP) of the RF transmitter and the gain of
the transmitting and receiving antenna. For the used IEEE
802.15.4 compliant proprietary 2.4 GHz ISM transceiver with
an output power of +10dBm we have investigated a PL(dy)
of —67dBm at dy = 1 m.
The value of n is influenced by the specific environmental
propagation conditions and the used frequency. In [13] and

[14], values for n between 1.8 and 3.2 are given for obstructed
indoor environments and frequencies between 900 MHz and
4.0 GHz.

In the first step of the WCL algorithm, the RSS values
from all receiving reference nodes (RNs) are transformed into
distances. Using (1), a reference path loss PL(dy) at a distance
dy = 1m and the RSS instead of the path loss, the distance
d;; between the transmitting blind node (BN) and the j-th RN
at time instance ¢ can be calculated with

RSS;;—RSS(dg)
— 1on

dij = 1ol ©)

In the second step, the distances d;; are transformed into
weights w;; according to (3).

1
(di)*
Similar to the path loss coefficient n, the weighting factor g
depends on the environmental conditions. From previous mea-
surements in obstructed indoor environments the weighting
factor was determined between 2.2 and 3.8 [15].

The BN’s position is given by the weighted positions of the
RNs. The accuracy depends on the subfield of the regarding
area (center or border) and the relationship between relative
and absolute LQI values. For low LQIs the BN might be
located near a dominating RN (cf. Fig. 2). For high LQIs,
the advantage of the weighting gets lost and the WCL reaches
similar results to range-free centroid localization approaches
which are discussed in the next section III.

In [16] we have proposed the selective adaptive weighted
centroid localization (SAWCL) approach, which enables a
further improvement of the accuracy by an adaption of the
weights according to their statistical distribution. Looking at
Fig. 2, for low LQIs all of the weights are raised by a specific
fraction, for high LQIs they are reduced to increase the relative
difference of the weights. The BN’s two-dimensional position
P; (x,y) at the time instant ¢ is computed with the modified
weights w!. and the fixed positions B; (x,y) of the RNs

i
according to

’w”(WCL) = (3)

ZT:l (w'ij - Bj (z, y)) '

Z;’n:l w;j

B. WCL using Redundant RSS Readings (rWCL)

RSS-based distance estimations in multipath indoor en-
vironments are known to be error-prone. With a diversity
configuration using more than one channel between BN and
a single RN the multipath fading can be compensated and the
error of the distance estimates is reduced significantly. Thus,
the accuracy of the WCL position estimates is increased in a
significant way.

If there exist more than one channel between the BN
and a single RN, the RSS for the distance approximation
is calculated using a maximum probability combining (MPC)
algorithm [18]. With a diversity scheme like the one proposed
in [16], up to four independent radio channels are available

Pi(z,y) = “4)
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Fig. 2. Centroid localization approach showing the influence of the LQI
distribution on the position estimation. Source: [17]

between the BN and a single RN. With the miniaturized
hardware platform used here and described in detail in [18]
even eight nearly independent RF channels are used. For m
redundant diversity channels, the distance d;; between the
transmitting BN and the j-th RN at time instance ¢ can be
calculated with

dij(rWCL) = 1o< : (5)
where M PC,,,(RSS;;) is the RSS from the j-th RSS which
has the maximum probability out of N < m acquired RSS
values. The weighting factor w;; and the centroid P; (x,y) of
the BN’s position are calculated according to (3) and (4).

MPCm(RSSij)—RSS(dO))

III. RANGE-FREE CENTROID LOCALIZATION
A. Basic Centroid Localization (CL)

Centroid localization (CL) is a proximity based technique
to determine the rough position of a BN with the help of
certain RNs with minimum software efforts. The basic CL
algorithm as a simple range-free implementation uses the
binary link information of several RNs with known positions
as sensor input for a rough location estimation [19]. In Fig.
2, a scenario with four RNs is shown. Under the assumption
of entire uniform circular communication ranges, the BN is
located inside the shaded area when it has a link to all four
RNs. The position estimation is calculated according to (4)
where the weights are given with

[ 1 ,link to j-th RN
wij(CL) = { 0 ,no link to j-th RN
With the binary weighting factor only the RNs which have

a link to the BN are used for the calculation of the centroid
using (4).

(6)

B. CL using Link Quantity Information (rCL)

With a diversity configuration proposed in [18], an ad-
ditional source of position information is available. Instead
of using the RSS as LQI for a range-based positioning, a
novel range-free centroid approach uses the exact number of
available diversity channels — the link quantity information
(LQnlI) — to estimate the BN’s position. Like for the WCL and

basic CL, the position estimation is calculated according to (4).
For the rCL algorithm using LQnl information the weights are

given with
#on(RXij)
wii (rCL) = —————"—, (7)
i(reL) #en(MAX; )
where #.,(RX;;) is the exact number of available chan-
nels which signals could be received by the j-th RN and
#Hen(MAX;;) is the maximum number of available channels.

IV. HYBRID CENTROID LOCALIZATION

The final hybrid centroid localization (rHCL) approach uses
redundant RSS-based distance approximations d;;(rWCL)
from (5) and the additional LQnI weighting w;;(rCL) given
with (7). The rWCL approach compensates multipath fading
effects and reaches more accurate position estimates than
single channel WCL. It might be odd that the rough range-
free rCL position estimate would improve the accuracy of the
range-based rWCL positioning but in environments with a lot
of reflecting surfaces, the LQnl sometimes is a better indicator
than an RSS-based LQI. The following results from a real life
tracking application are used to explain the behavior of the
hybrid rHCL approach.

In Fig. 3, a typical setup of RNs for a one-dimensional
localization and tracking of maintenance staff in an under-
ground longwall coal mining environment is shown. The RNs
are installed on heavy metallic shields for the ceiling support.

Fig. 3.
maintenance staff in the underground longwall coal mining environment (RN
— reference node, BN — blind node).

Infrastructure components for RSS-based positioning and tracking of

In Fig. 4, the scheme of a one-dimensional infrastructure
setup in an overground longwall mining training environment
with twenty RNs and a distance of 1.5 m between the nodes
is shown together with the estimated position of the mobile
BN. The scheme shows the position estimation GUI of a pro-
prietary Java framework (MineLoc Monitor v0.2) which was
developed to evaluate the performance of different localization
algorithms [20].

The LQnl values for two different frequencies (868 MHz
| 2.4 GHz) are shown below the RNs, the RSS values are
shown above the RNs. For the shown time instance the BN
was located at RN 9. RN 18 has calculated an RSS value
of —75dBm using the MPC approach. This value indicates
a much smaller distance than the actual distance between BN
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and RN. Multipath fading with a positive signal interference of
two or more RF waves at the receiving RN is the cause of this
deviation. The estimated position using the tWCL algorithm
was calculated between RN 9 and RN 10 with a positioning
error of 0.38m.
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LQnl: # of available RF channels (2.4 GHz | 868 MHz)
Fig. 4. One-dimensional localization for longwall mining setup with 20

reference nodes using LQI (RSS) and LQnI information.

The LQnI of RN 18, which is 2 out of 8, is the better
sensor information in this particular case. This example acts
as a motivation to make also use of the LQnl values for the
position estimation, especially since there is no need in extra
costs for hardware or computation time.

The processing steps are the same as for redundant WCL
and basic CL. The distance approximations are calculated
according to (5). The weighting factors are given with

Hen(RXij)

#en(MAX;)
(dij(rWCL))*

®)
The effect of the additional LQnl information is illustrated in
Fig. 5. The distribution of the RSS values over the 20 RN is
shown for two different approaches. Without additional LQnI
information the relatively strong RSS values of RN 16 and RN
18 lead to an RSS distribution where the centroid is influenced
by these values. When an additional weighting is introduced
(LQI+LQnl), the influence of these two RNs is minimized and
thus, the position estimation error is reduced.

When no channel is disturbed and thus, the number
#cn(RX;j) of received RSS values equals the maximum chan-
nel number #., (M AX;;), the numerator in (8) is reduced to
17 and the hybrid approach delivers a similar weighting factor
as the rtWCL approach (cf. Fig. 5, RN 5-11).

wij(rHCL) = wij(""WCL) . wij(rCL) =
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Fig. 5. RSS distributions over 20 RNs for longwall mining setup with and
without additional LQnlI processing (1.5 m RN distance, BN located at RN
9).

V. LOCALIZATION AND TRACKING RESULTS

The test bed for the localization and tracking measurements
under laboratory conditions is shown in Fig. 6 on the left. A
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Fig. 6. Measurement setup on a motion test track in an obstructed test hall
(motion profiles show one A-B-A motion cycle, T' = 65s).

motion test track in an obstructed test hall is used to figure out
the impact of the redundant signal processing and the addi-
tional LQnl information on the positioning error. The mobile
BN which should be located performs periodic movements on
the motion test track according to the motion profile shown
in Fig. 6 on the right. The duration of one movement from
position A to B and back to A is 65s. Seven RNs are evenly
distributed along the track with a distance of 2.0 m between
two nodes. For an explicit multipath propagation, we installed
metallic reflecting walls next to the track. Thus, we obtain the
signal interference characteristic from the real life tracking
application in the longwall mining environment (cf. Fig. 4).
In Fig. 7 and 8, the trajectories of the BN on the motion test
track for a complete motion cycle (A-B-A) are shown. Differ-
ent configurations are compared to point out the influence of
the redundant sensor information on the localization accuracy.
The trajectory for the CL algorithm using a binary LQnl

12

CL(1x2.4 GHz)
———-rCL(4x2.4 GHz)
rCL(4x2.4 GHz + 4x868 MHz)

1 51 101 151
Iteration

Fig. 7. Estimated trajectories for one-dimensional tracking measurements
on a motion test track using range-free position estimation algorithms (CL —
centroid localization with binary sensor input from a single RF channel, rCL
— CL with LQnl information from redundant RF channels).



2012 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION, 13-15TH NOVEMBER 2012

WCL(1x2.4 GHz)
——— rWCL(4x2.4 GHz + 4x868 MHz)
’ rHCL(4x2.4 GHz + 4x868 MHz)
0 T T
1 51 101
Iteration

T T T
151 201 251

Fig. 8. Estimated trajectories for one-dimensional tracking measurements on
a motion test track using range-based position estimation algorithms (WCL
— weighted centroid localization with RSS sensor of a single RF channel,
r'WCL — WCL with RSS sensor information from redundant RF channels,
rHCL — rWCL with additional weighting using the rCL approach with LQnI
information from redundant RF channels).

information of a 2.4 GHz RF module shows large position
errors. Using the rCL approach and four 2.4 GHz channels
to calculate the LQnl (0..4), the position estimation error is
reduced significantly. Another improvement is reached with
rCL(8) which uses the radio link of additional four channels
in the 868 MHz band.

A detailed comparison of the location estimation error
(LEE) is given in Table 1. The cumulative distribution func-
tions (CDFs) of all presented centroid localization algorithms
are shown in Fig. 9. The maximum error for rCL(8) is reduced
by more than 50 % compared to the basic CL approach. The
CDFs show that the range-free rCL(4) and rCL(8) approaches
achieve even better results than the range-based WCL(1) setup
without redundant RSS values. The rWCL(8) configuration
using a weighting with a maximum of eight redundant RSS
values shows a significant LEE reduction compared to WCL(1)
and the range-free methods. The hybrid rHCL(8) configuration
using eigth RSS for the distance approximation and additional
LQnl information reaches the best results.
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0.7 1
Z 06 - cL
S5os4 /A4 | rCL(4)
Soad S rCL(8)
2053 ———-WCL(1)
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Fig. 9. Cumulative distribution functions for the location estimation error of
a 9.6 m tracking measurement using RSS and LQnl information.

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ESTIMATION TECHNIQUES
(LEE - LOCATION ESTIMATION ERROR IN METERS)

CL(1) rCL@) rCL(®8) WCL(l) rWCL(@8) rHCL()
LEFE, eq 1.40 0.61 0.44 0.68 0.30 0.31
OLEE 1.05 0.72 0.45 0.74 0.34 0.29
LEFEy9q, 4.39 2.95 1.69 3.21 1.36 1.18
LEFEnmaz 5.09 3.05 2.30 4.81 1.70 1.37

VI. CONCLUSIONS AND FUTURE WORK

The comparison of the different range-free and range-based
RF localization methods shows the importance of additional
sensor information in fading environments. Adding redun-
dancy to the distance approximations leads to a significant
reduction of position estimation error. With the redundant RF
channels, a localization approach using the available LQnl
information is useful to correct some of the erroneous po-
sition estimates. The impact of the LQnl information on the
distance and position estimation accuracy is evaluated by the
RSS distribution of a real life localization with 20 reference
nodes. With the proposed hybrid approach, a maximum LEE
of 1.37m 1is reached on a motion test track and thus, a
good position estimation in multipath fading environments is
possible with low infrastructural costs.

Further improvements of the hybrid approach focus on
sophisticated diversity configurations with more than eight
redundant RF channels and other carrier frequencies (e.g.
5 GHz ISM). For the RSS localization system a further de-
velopment should comprise the replacement of the proprietary
RF transceivers by standardized low-power protocols like
ZigBee or Bluetooth low energy. Additional measurements in
the real life application of underground longwall mining will
provide a more detailed system benchmark, especially under
the influence of the dust and heat conditions and the multipath
propagation in the corresponding environment.
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