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Abstract—Zero velocity update (ZUPT) is an effective way for 
pedestrian navigation in a GPS (Global Positioning System) 
denied environment. The stance phase in each step provides zero 
velocity measurement for IMU (Inertial Measurement Unit) drift 
correction. Most previous research, however, gives navigation 
solutions only for pedestrian walking but not running. Compared 
with walking, running has a shorter stance phase with qualified 
as zero velocity. Therefore a stance phase detector for walking 
may not be capable for running. This paper presents a novel 
ZUPT algorithm which can achieve robust pedestrian navigation 
for walking, stair climbing, and running. Our stance phase 
detector consists of one footstep detector and two zero velocity 
detectors (ZVDs).The footstep detector is used to mark each new 
step, and the first ZVD (ZVD1) can successfully detect zero 
velocity while walking by setting thresholds on both gyroscope 
and accelerometer measurements. While ZVD1 is failed for 
running, the second ZVD (ZVD2) is introduced with a relative 
larger threshold on gyroscope measurement only. The proposed 
stance phase detector was tested for walking, running and stair 
climbing. In all cases, most of the footsteps are detected correctly 
and our ZUPT algorithm can be successfully implemented. 
Experimental results show that the navigation accuracy of the 
proposed algorithm for running cases is comparable to that of 
walking only cases. Tests on a biped robot are being also 
conducted to verify the effectiveness of the algorithm. 
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I.  INTRODUCTION 
Seamless navigation in all circumstances, including an 

environment with degraded GPS signals, is a challenge issue. 
With the development of robots, their robust tracking and 
navigation are eagerly demanded. Robots are often deployed 
in indoor environment where the GPS signal is unreliable. Not 
dependent on any external information, an IMU can provide 
continuous navigation information but with accumulated 
errors, which need to be corrected frequently by other 
measurements. 

 Integration of GPS and IMU has got much attention in 
navigation applications. Developed technologies have made it 
possible to use GPS in some indoor environments. Godha and 
Lchapelle proposed a system combined shoe-mounted IMU 
and GPS to bound drift errors in outdoor scenarios[1]. The 
system has the ability of using IMU to bridge the navigation 

solution indoors and forest environments with severely 
degraded signal where GPS is unreliable. 

There are some non-GPS approaches to track and navigate 
personal position which normally require external references. 
Hide and Moore [2] investigated the use of computer vision 
derived velocity measurements to frequently correct the drift 
of a low-cost IMU. Hisashi et al. [3] proposed an image 
sequence matching technique for the recognition of locations 
and previously visited places. Work is also being done on 
simultaneous location and mapping (SLAM), which usually 
uses camera or LIDAR (Light Detection And Ranging) as 
sensors. However, unlike the inertial sensor, these sensors 
above are very sensitive to the environment and are unreliable 
in unfavourable operation conditions. 

Many approaches have been developed for pedestrian dead 
reckoning (PDR) [4]-[18], which does not need additional 
device except inertial sensors, and can also be applied for 
pedal robots navigation. The main advantages of inertial 
sensor-based systems are that they are self-contained, 
environment-independent and can provide instantaneous 
position, velocity and attitude measurements. The major 
challenge for PDR is how to efficiently reduce or bound 
navigation errors. 

There are many different PDR systems using inertial 
sensors. The simplest one is the pedometer, which counts steps 
and estimates average length of steps. Cho and Park [4] 
proposed a pedometer-like approach which uses a two-axis 
accelerometer and a two-axis magnetometer attached to user’s 
boot. Step length is estimated from accelerometer readings 
that are passed through a neural network, and a Kalman Filter 
was used to reduce the effect of magnetic disturbances. While 
the results in outdoors are reasonable, the results in indoor 
environment have large errors as the varying magnetic 
disturbances. 

As a special character for pedestrian, there are stance 
phases during walking, which can be used for PDR drift 
correction. Therefore, various ZUPT algorithms for PDR 
navigation have been developed [5-18]. Algorithms for step 
detection using accelerometers have been presented, which 
mainly contain three types: peak detection, zero crossing 
detection and flat zone detection [5]. In [6], a gait state is 
modelled as a Markov process and gait states are estimated 
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using the hidden Markov model filter based on force sensors 
to determine when to apply ZUPT. Similarly, a Markov model 
is constructed using segmentation of gyroscope outputs in [7]. 
Slightly different algorithms can be achieved based on both 
accelerometer and gyroscope outputs. In [8], the zero velocity 
is determined by comparing z-axis accelerometer and y-axis 
gyroscope outputs with the threshold value. In[9], the zero 
velocity is determined based on norms of accelerometer and 
gyroscope along with variance of accelerometer. 

All the above detectors can be generalized as the so-called 
acceleration moving variance detector, the acceleration 
magnitude detector, the angular rate energy (ARE) detector 
which are all generalized likelihood ratio tests. Skog et al. [11] 
developed a novel stance hypothesis optimal detector; 
however, it is restricted to 2D cases. Ojeda and Borenstein et 
al. [12] proposed a shoe-based navigation system consists of a 
15-state error model. Their system works well both in 2D and 
3D environments. With the ARE detector and related signal 
processing algorithms, the horizontal relative error was about 
0.49% of the total distance travelled, but the vertical error was 
always more than 1%. 

However, all of the algorithms mentioned above fail when 
operating high-speed movement with the same settings since 
they are incapable of detecting the stance phase correctly 
when running. Compared with walking, the duration of stance 
phase in running is shorter, and the stance phase is less 
qualifiedly as zero velocity. Barely enlarging the detection 
threshold will introduce false stance phase detection, which is 
the last thing wanted in ZUPT. 

In this paper, we propose a robust ZUPT algorithm which 
can correctly detect the stance phase not only while walking, 
but also running. The novel stance phase detection algorithm 
includes a footstep detector which indicates every new step, 
and two zero velocity detectors. The first zero velocity 
detector (ZVD1) was introduced in our recent research which 
can correctly detect stance phase while walking and climbing, 
by setting four conditions on both the accelerometer and 
gyroscope measurements [21]. The second one (ZVD2) is 
designed for running based on the motion information of foot 
dynamics where only gyroscope measurement is used. By 
strategically combining the three detectors, robust stance 
phase detection for both walking and running has been 
achieved. An Extended Kalman Filter (EKF) with 24 error 
states is then applied for IMU drift correction. Experimental 
results demonstrate the validity of our robust algorithm. It is 
better or comparable to some of the highest positioning 
accuracy figures reported for ZUPT in [12],[13]and [17]. 

The rest of the paper is organized into five sections. 
Section II introduces the background of standard strapdown 
inertial navigation system (INS) mechanism, ZUPT and EKF. 
Section III details the new stance phase detector which works 
well for both walking and running. Section IV describes the 
experiments conducted and their results are analysed and 
discussed in Section V. The last section is the conclusion and 
future work. 

II. MATHEMATICAL MODELLING 
An IMU normally consists of three accelerometers and 

three gyroscopesin an orthogonal pattern. When it is attached 
to a moving platform, the standard strapdown INS mechanism 
is used, as in our system. 

A. Strapdown Inertial Navigation Mechanism 
Figure 1 shows strapdown INS mechanism. Attitude can be 

determined by integration of the rotation rate of gyros. After 
vector transformation, velocity and position can be determined 
by the integration of acceleration with compensation of gravity 
and Coriolis force. Details of the INS mechanism are described 
in [10] and [19]. 

 

Figure 1.  The basic blocks of strapdown INS mechanism 

In practice, however, this simple integration will lead to 
unbounded growth in position errors with time due to the 
noise associated with the measurement and the non-linearity 
of the sensors. In order to get high accuracy navigation 
solution with an IMU, estimated error states with additional 
measurements and/or constrains are needed in the mechanism 
to reduce the errors. The technique ZUPT is applied here 
which utilizes the zero velocity in stance phase as additional 
measurement to reduce IMU drift.  

B. ZUPT 
When a person or biped robot walks, its feet alternate 

between a stance phase and a swing phase. This stance phase 
appears in each step at zero velocity, thus the velocity of a 
shoe-mounted IMU can be reset to zero periodically. It is 
critical to identify the stance phase when the IMU attached to 
the shoe is stationary and then applies ZUPT to correct the 
errors with EKF. In each estimation cycle, once zero velocity 
has been detected, ZUPT delivers new updated error states to 
the strapdown INS mechanism; otherwise the error states keep 
unchanged as the ones which are updated in the last stance 
phase which is usually named as IMU free running. ZUPT can 
correct velocity directly, and also restrict correlated position 
and attitude errors and estimating the sensor errors indirectly. 
Figure 2 shows the main blocks in a typical INS-EKF-ZUPT 
PDR methodology [9]. It is worth to mention that the miss 
detection of stance phase will introduce long period of IMU 
free running which will increase navigation errors, while false 
detection of stance phase will cause wrongly updated error 
states which will result in large navigation errors.  
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Figure 2.  The main blocks in the framework used for pedestrian dead-

reckoning 

C. Extended Kalman Filter 
An exact expression for the system equation of an EKF 

depends on the states selected and the type of error model used 
to describe them. The EKF we used includes the following 24 
error states [20]: 

            
T

RPHDENDENNav vvvrrrx ,,,,,,,,  
        ],,,[ fbfbINSx     (1) 
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Where Navx , INSx and Gravx  are the navigation error 
vector, the IMU sensor measurement error vector and gravity 
uncertainty respectively.  is the accelerometer error vector, 
and  is the gyro error vector. Subscript b  stands for bias and 
subscript f  stands for scale factor. 

Psi-angle model is adopted in the system [20]: 

vrr en  
(2)ie inv v f gv ieie  

in  

Where, r v and  are the position, velocity, and attitude 
error vectors respectively, g  is the error in the computed 
gravity vector, f is the specific force vector, ie is the earth 
rotation rate vector, en is the transport rate vector and in  is 
the angular rate vector from the navigation to the inertial 
frame. 

The dynamic matrix is obtained by a linearization of the 
equation (2). A detailed expression of the dynamic matrix can 
be found in [20]. The measurement model is 

nxHz     (3) 

Where ]0000000[ IH , n  is the measurement noise. 

Consider the error state, which is the difference between 
the estimated states computed by the strapdown navigation 
mechanism and the true state which is zero velocity here. 

In this approach, the crucial requirement for achieving a 
good navigation performance is to get reliable and robust 
stance phase detection for zero velocity update.  

III. STANCE PHASE DETECTION 
In order to apply ZUPT, it is critical to identify the stance 

phase first. Our stance phase detector includes one footstep 
detector which is used to determine the beginning of the gait 
cycle and two zero velocity detectors which are used to detect 
the stance phase for walking and running respectively. 

A. Footstep Detector 
In pedestrian navigation, it is important to know when the 

subject takes a step. The step detector can not only mark the 
beginning of a gait cycle, but also segment the subject’s 
movement into discrete sections. The procedure of 
segmentation divides a gait cycle into four phases: stance, 
heel-off, swing, heel strike. The footstep detector mainly 
detects heel strike after a foot completes swing phase in the air, 
the foot reaches the highest point and touches down to the 
ground. Once the heel has hit the ground, the deceleration of 
the forefoot is very dramatic and characterized by large 
changes in the acceleration profile. Thus, we simplify the 
characteristic as that, in heel strike phase, the z-axis 
acceleration experiences a monotonic decreasing which is 
unique and obvious to detect so we denote it as a new step. 

B. Zero Velocity Detector 1 (ZVD1) 
ZVD1 was proposed in our previous study which can 

effectively detect zero velocity during walking [21]. In the 
proposed approach, it is not necessary to identify the exact 
start and end of a stance interval. Rather, as long as one single 
instance in a stride is detected, it can be used to remove the 
sensor drift, so the error will not be accumulated. ZVD1 uses 
both accelerometer and gyro measurements in real-time 
conditions. The algorithm implemented consists of the 
following 4 conditions: 

1) The magnitude of the acceleration ka , for every 
sample k: 

5.0222
zkykxkk aaaa

                
(4)

 

otherwise
thath

C aka
0
1

1 maxmin  

2) The magnitude of the acceleration on z axis kza ,for 
every sample k: 

otherwise

thath
C azkzaz

0
1
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3) The magnitude of the gyroscope k , for every 
sample k: 

5.0222
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             (6) 

otherwise
th

C k
0
1
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4) The magnitude of the gyroscope on y axis ky , for 
every sample k: 

otherwise

thC yky
0
14 max

                        
(7) 
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The z axis acceleration and the y axis angular velocity are 
the most significant indicators of walking event. Since a foot 
is contacted with ground which indicates a still interval, the 
acceleration of gravity and the angular rate of foot rotation do 
not vary over this duration. However, due to unsteady tilt of 
the shoe surface, the measured y  and za are not exactly 0 
and g respectively, but with large noise. Similarly, although 
ideally the magnitude of total angular velocity and 
acceleration on horizontal plane should be zero in a stance 
phase; but in fact, they will not be zero, but a lower value than 
a given threshold. The thresholds are based on the average 
value of the accelerometer and gyro outputs during the initial 
stationary period of time plus a certain level of fluctuation to 
ensure its robustness. The initial stationary period is at the 
beginning of sensor data collection when the IMU is in a 
stable condition. 

These four logical conditions listed as equation (4) to (7) 
must be satisfied simultaneously to declare a stance phase. 
Once a zero velocity in one step is detected, velocity is reset to 
zero; the position, velocity and attitude errors are reset to zero 
after INS refine the current position, velocity and attitude. The 
accelerometer and gyro errors and gravity uncertainty are 
calculated and fed back to the EKF which allows EKF to 
correct the navigation error afterward.  

C. Zero Velocity Detector 2 (ZVD2) 
Immediately, it is apparent that the gait cycle of a runner is 

shorter than that of a walker and that the profile of the gait 
cycle is significantly different. In the walking gait, the push-
off and swing phases are mirrored by the heel strike and stance 
phases. While one leg is in the push-off phase, the other is in 
heel strike phase, and while one is in swing phase, the other is 
in stance phase. This symmetry in the walking gait shows the 
rhythmical transfer of weight between the two limbs. 
Conversely, during the running gait this symmetry does not 
exist. Instead, both legs can be in the swing phase at the same 
time, and heel strike occurs while the other leg is still in the air 
[22] 

. ZVD2 introduced here is specially used to detect zero 
velocity based on the energy of gyro signals. The zero velocity 
is determined once “norm (gyro) < E” is satisfied, where E is 
the threshold of energy (Er = 5e-4 for run, Ew = 5e-5 for 
walk). The process of the stance phase detector is shown in 
Figure 3. 

 

Figure 3.  The process of the stance phase detector 

Once the footstep detector decides that a new step arrives, 
in the first half step, we apply both ZVD1 and ZVD2 while the 
last half step using ZVD1 only. In our case, we do not need to 
classify the motion is walking or running. Since the threshold 
for running is larger than that of walking (Er>Ew), in the first 
half step, as long as the condition for walking is satisfied, we 
apply Ew afterwards, unless Ew is not satisfied during the 
whole half step we only apply Er. For the last half step, ZVD1 
is used to prevent some zero-crossings in swing phase 
mistakenly detected or the case that the foot keeps still for a 
few seconds. Another swing phase indicator is used to prevent 
false detection especially when use only measurements of 
gyroscope. 

IV. EXPERIMENTS 

A. Hardware Description 
We implement the proposed PDR algorithm with a 

MEMS IMU, Navchip from Intersense Incorporated. Navchip 
is the smallest IMU in the world and it deliveries excellent 
measurement results. The small size of Navchip makes it easy 
to attach to a boot and has no effect on walking. Table I lists 
the specification of Navchip (encapsulated within casing). 

TABLE I.  SPECIFICATION OF NAVCHIP  

Gyroscope Performance Accelerometer Performance

Range (deg/sec) ±480 Range(m/s²) ±8 

Noise Density (º/s/√Hz) 0.004 Noise Density (ug/√Hz) 70 

Bias Stability (º/hr,1σ) 12 Bias Stability (mg, 1σ) 0.1 

 
The IMU was mounted on the front surface of a boot. 

During initial test, we discovered the phenomenon of 
excessive shock and acceleration measurement overflow. We 
took countermeasures such as placing shock absorb padding 
and protective casing. Tests afterwards show reduced shock 
and improved measurement. Figure 4 shows the accelerometer 
measurement before (upper figure) and after the shock 
countermeasure. 

 

Figure 4.  Comparison of acceleration before and after shock reduce 
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B. Tests 
Tests were conducted in three trajectories, as shown in 

Figure 5, 6 and 7. Each trajectory was tested three times with 
different human gaits which includes walking, running and 
walk alternates running. All the trajectories are closed loop, 
which means the subject stops at the exact same location 
where he starts. In the figures, the dark dot represents the start 
point and the blue one is the end point. In addition, in all cases 
before walking, the subject stands still at the start point for 
about 4 seconds, which is used in the proposed ZUPT 
algorithm to measure the IMU attitude in stance phase so as to 
setting the parameters and initial conditions. 

The first two trajectories are conducted on level ground; 
the last trajectory includes climbing stairs. Trajectory 1 is an 
“8” shape closed loop that the walking test is conducted for 
three loops. During our tests, the data will be blocked due to 
the sensor characteristics when experiencing consecutive 
overflow, thus our running and walk alternate run tests only 
follow the trajectory for one and two loops respectively. 

Trajectory 2 follows a squared corridor that all the tests are 
conducted for three loops by another subject. The walking 
behaviour includes walking, walk alternate run, running and 
inverse run.  

Trajectory 3 extends the 2D environment to 3D which 
includes climbing stairs. This test combines the three gait 
behaviours together and during the tests, the subject walks for 
the first three loops, follows by a three loops’ running, and 
ends up the tests with randomly walking alternate running for 
the last three loops. 
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Figure 5.  Trajectory 1 
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Figure 6.  Trajectory 2 
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Figure 7.  Trajectory 3 

V. RESULTS AND DISCUSSION 

A. Stance Phase Detection 
Figure 8 shows a section of the computed norm of gyro for 

stance phase detection. The dark dots represent the sample 
points that are detected to be zero velocity and the diamond 
indicates a new stride arrives. 
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Figure 8.  Norm of gyro 
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B. Navigation Solution 
Table II summarises the final return position errors for 

each trajectory and Table III gives the comparison results of 
different gait behaviours for same trajectory.  

It was expected that the navigation error of running cases 
should be larger than that of walk alternate running cases since 
higher dynamics experienced during running shows more 
variability than in the walking gait, which expressed as fewer 
ZUPT applies. However, from our results as shown in Table II 
and Table III, we get different conclusion. The main reason is 
that when the subject changes his gait randomly, sometimes 
it’s easy to get the footstep detector confused, however, since 
ZVD1 is applied to prevent false detection in swing phase, we 
can still get reasonable results. 

TABLE II.  RETURN POSITION ERRORS 

Event Estimate 
Distance (m) 

Relative error (%) 

X-Y plane Z direction 

Trajectory1 

Walk 288.8 0.49% 8.7e-5% 

Walk & run 171.0 1.22% 0.17% 

Run 89.1 0.87% 0.0015% 

Trajectory2 

Walk 192.2 0.28% 1.9e-5% 

Walk & run 192.8 0.86% 0.037% 

Run 192.2 0.29% 5.5e-4% 

Inverse run 187.4 1.22% 0.001% 

Trajectory3 Walk & run 525.6 0.50% 0.38% 

Average  229.9 0.72% 0.074% 

 

TABLE III.  ERRORS OF GAIT BEHAVIOUR 

 Relative error (%) 

 X-Y plane Z direction 

Walk 0.39% 5.3e-5% 

Walk & run 1.04% 0.21% 

Run 0.79% 0.001% 

 
Here we segment the last test into three segments since 

each gait maintains for three loops and always back to the start 
point after each loop. In the X-Y plane, the red line draws the 
first three walking loops; the green line represents the running 
loops while the blue one is the trajectory conducted by 
walking alternate running. The figures also demonstrate the 
same results as table III that the running performance is better 
than that of walk alternate running. 
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Figure 9.  Trajectory3 including all gaits 

In addition, out of the excessive shock, the bi-directional 
overflow will affect the accuracy in a large extend, although 
we have already taken measures to reduce the impact, it is still 
inevitable that the overflow would affect INS mechanism 
computing vertical velocity and position. Figure 4 shows the 
effectiveness of shock reduction for walking behaviour, the 
figure below indicates that our current protective measure is 
not enough capable of running. In figure 10, the z-axis 
acceleration is severely overflowed that we are considering 
using other large range sensors to do the tests. X-axis 
represents the sample times. The diamond here is the detection 
of new step by footstep detector, while the black dots are the 
sample points that have been detected to be zero velocity. 
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Figure 10.  Raw accelerometer data 

VI. CONCLUSION AND FUTURE WORK 
This paper presented a robust algorithm for self-contained 

PDR system which can handle running cases. From the test 
results, we can draw a conclusion that the algorithm is 
efficient to limit the growth of IMU error. Our robust stance 
phase detection shows satisfactory performance. This real-
time algorithm could give accurate navigation solution 
simultaneously as a pedal robots or pedestrian is walking or 
running. 

The proposed algorithm performs well in both walking or 
running conditions, however, due to the excessive shock and 
sensor measurement overflow, there still exist many problems 
and has room to improve. We are still working on that. In the 



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012 
 

future, we will develop methods that can handle the overflow 
and a more efficient robust running algorithm. Currently tests 
on a biped robot are also being conducted to verify the 
effectiveness of the algorithm. 
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