
2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

A Reference System for
Indoor Localization Testbeds

Simon Schmitt, Heiko Will, Benjamin Aschenbrenner, Thomas Hillebrandt and Marcel Kyas
Freie Universität Berlin

AG Computer Systems & Telematics,
Berlin, Germany

{simon.schmitt, heiko.will, benjamin.aschenbrenner, thomas.hillebrandt, marcel.kyas}@fu-berlin.de

978-1-4673-1954-6/12/$31.00 c© 2012 IEEE

Abstract—We present a low-cost robot system capable of
performing robust indoor localization while carrying components
of another system which shall be evaluated. Using off-the-shelf
components, the ground truth positioning data provided by the
robot can be used to evaluate a variety of localization systems
and algorithms. Not needing any pre-installed components in
its environment, it is very easy to setup. The robot system
relies on wheel-odometry data of a Roomba robot, and visual
distance measurements of two Kinects. The Robot Operating
System (ROS) is used for the localization process according
to a precise pre-drawn floor plan that may be enhanced with
Simultaneous Localization and Mapping (SLAM). The system is
able to estimate its position with an average error of 6.7 cm.
It records its own positioning data as well as the data from the
system under evaluation and provides simple means for analysis.
It is also able to re-drive a previous test run if reproducable
conditions are needed.

Index Terms—Indoor Localization, Robot Operating System,
Kinect, Simultaneous Localization and Mapping, Reference Sys-
tem

I. INTRODUCTION

While widely accepted simulations of indoor localization
systems and algorithms provide significant insight into their
behavior, modeling a sufficient level of detail can often be
difficult. But frequent analysis under real-world conditions is
essential to optimize new algorithms for best results. Real-
world experiments in this domain are hard to evaluate because
a Reference System (RS) which provides a more precise lo-
calization capability than the System Under Evaluation (SUE)
is needed to get ground truth data. With such a system one
can evaluate various localization techniques - for example
based on time-of-flight measurements. Without such a RS,
real-world positions of a SUE would have to be collected by
hand, which is difficult and time consuming considering not
only the position itself, but also the exact time at which the
position was measured or estimated. This is most important
if a continuously moving component shall be tracked. The
gathered ground truth data and the estimated positions of
the SUE can then be synchronized by using timestamps for
further analysis. With such a RS, various localization systems,
algorithms, and their configurations can easily be evaluated
and compared to one another.

In order to evaluate another system, such a mobile RS
has to be able to carry the needed components of the SUE.

While moving through rooms and corridors, both systems
must thereby not interfere in performing their localization.
For example, nearby people controlling the RS during a
run can disturb a SUE. For that reason, the RS has to be
capable of moving autonomous or remote controlled during an
experiment. Also, the used radio frequencies and bandwidth
must not interfere with the SUE. The RS should not need any
pre-installed infrastructure in its environment, e.g. deployed
cameras or beacons enabling the localization. Therefore, the
RS has to be able to estimate its own position in relation
to a given coordinate system. The position estimation error
during the performance has to be an order lower than expected
errors of a SUE in order to allow a fine grained comparison
of different localization approaches.

We present a precise and inexpensive mobile RS capable
of performing robust indoor localization on floors in most
common office-like environments using Robot Operating Sys-
tem (ROS) [1]. The benefit of this system is that it does
not need any pre-installed infrastructure and can easily be
used in various buildings. It consists of a Roomba cleaning
robot [2] and a laptop which is mounted on top the Roomba.
The software running on the computer is able to estimate
the robot’s position relative to a coordinate frame, which
is defined by a pre-drawn floor plan. For the localization,
odometry data from the Roomba is combined with visual
distance measurements taken by a Kinect depth sensor [3]
which is also mounted on the robot. The use of a rack allows
the additional mounting of the mobile component of the SUE.
The use of open-source software assures a high customizability
for hard- and software. We implemented a middleware that
allows us to collect data produced by a SUE as well as the
ground truth positions from the RS itself. We are able to
continuously calculate the robot’s position with an average
position estimation error of 6.7 cm. The system was evaluated
by driving along a grid of known positions while performing
self-localization. Furthermore, we show how Simultaneous
Localization and Mapping (SLAM) improves localization in
rooms essentially, and we argue the need for re-running tests
regarding the timing of the initial run.

II. RELATED WORK

Simulation is still dominant when it comes to evaluating
indoor positioning algorithms and techniques. When perform-

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

ing real-world experiments in wireless sensor networks, static
testing is widely used to measure positions of mobile compo-
nents.

For example Piras and Cina measured discrete positions
along a pre-defined path [4]. They moved a trolley with
localization equipment along that path by hand.

Bal, Xue, Shen et al. built a testbed for localization and
tracking in wireless sensor networks [5]. They focus on
industrial automation environments. Mobile components are
mounted to machines, tables, metal shelves and industrial
robots. However, they do not automatically collect any ground
truth data comparable to a full RS as described.

These approaches do not support mobile testing, which
is a requirement for the evaluation process when mobile
components are used in a SUE.

Most projects using indoor robotic equipment rely on in-
frastructural preparation prior to deployment.

For example, Johnson, Stack, Fish et al. use mobile robots
with a built-in antenna to evaluate indoor positioning algo-
rithms [6]. They use Emulab, which is a software capable of
controlling a network testbed consisting of multiple nodes, and
specialized software to control and track the robots. Overhead
cameras are used to localize each robot with a mean error
of 0.28 cm. However, this is only achieved after preparing
and training the tracking system in a constrained environment.
They use 6 cameras to track 6 robots in an area of 60m2.

Prorok, Arfire, Bahr et al. use among other sensors also
an overhead camera to identify multiple robots driving in a
constrained environment beneath [7]. The accuracy of this
system lies around 1-3 cm, which can also only be achieved
after a setup and a calibration stage of the system.

Segura, Hashemi, Sisterna et al. show another system ca-
pable of performing localization relying on distributed ultra-
wideband modules [8]. The modules emit beacons allowing a
robot to perform self-localization with an error under 20 cm.

The drawback of these implementations is their need for
some kind of infrastructure. In order to use a mobile RS
in common buildings without time consuming preparation or
heavy restrictions to space, a fully independent localization
system is needed. Another aspect is the usage of ROS, which is
not restricted to one scenario only. For example, other robotic
hardware could easily be used to allow for higher speeds
or a laser rangefinders could be mounted to achieve higher
accuracy when measuring distances.

III. HARDWARE

In order to have a functioning RS at a reasonable expense,
we use the low-cost TurtleBot [9] shown in Fig. 1. This Turtle-
Bot consists of a Roomba 531 cleaning robot manufactured
by iRobot, Microsoft’s Kinect powered by a separate battery
and a rack, allowing the user to mount additional components.
The Roomba 531 cleaning robot has a differential drive and
serves as a basis to a rack allowing for mountable sensors and
components of a SUE. A Microsoft Kinect depth sensor is
mounted on the rack. While performing localization, a laptop
is placed in the rack, that runs the software described in

Fig. 1: TurtleBot: Roomba 531 with a mounted Microsoft
Kinect.

Section IV. The robot is able to drive on any flat floors and
over door sills no higher than 0.5 cm. It can sustain a speed
of up to 0.5m/s. The battery pack provides enough power
for several test runs in our office building, where it drove a
distance of approximately 200m. The dimensions of 33 cm in
diameter and 40 cm in height are large enough to carry small
mobile components of a SUE.

With the Kinect, Microsoft offers a low-cost depth sensor
which is able to estimate distances from about 50 cm up to
5m [10]. We measured a viewing angle of about 58◦. While
the accuracy of a Kinect is very high, the distance error of
a measurement is proportional to square of the distance [11].
For example, at a distance of 2.5m the error is about 4.5 cm,
not considering 5% of the greatest outliers. At a distance of
5m, the error is expected to be approximately 19 cm, which
is significant. In order to account for that error and to refine
the localization and make it more robust, we added a second
Kinect to the TurtleBot that points backwards. This ensures
that the RS always has objects in its view, even if it is
directed in a room larger than 5m in diameter, because the
rear Kinect points to the wall behind it. This also accounts for
people walking along covering one Kinect’s view temporarily.
As another benefit, the RS can now localize itself in rooms
of up to 10m in diameter. However, it is not limited to
such rooms if additional features like furniture are present.
Considering the error at great distance, the system must have
objects in its view that are nearby, implying that the user
should let the robot always drive along a wall or ensure that
mapped obstacles are along the way in order to guarantee
that the localization process still works. This satisfies the
need of distance measurements in the environment the RS is
intended for. Common office-like buildings consist of corridors
from 1 to 3m in width. While laser rangefinders would
greatly enhance the field of view, our localization approach
with Kinects still satisfies our own accuracy need. Also laser
rangefinders are not as cheap as a Kinect (less than 100Euro).

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Roomba, Kinect

AMCL

Robot Operating System

GMapping

Proxy

Waypoint
Move Base

Pathcompare

Fig. 2: Important software components in the RS.

IV. SOFTWARE

The software stack on the on-board computer consists of
multiple programs communicating via ROS. Therefore, ROS
plays a central part in our RS. The relation between the
software components described below is shown in Fig. 2.

A. Robot Operating System

The ROS is an open-source software capable of handling
various aspects of typical robot functionalities, like using depth
cameras, processing their output or managing a dynamic tree
of transformation and rotation information of various objects
like the current relation between a map coordinate frame and
the robot itself. It enables fast and reliable interchange of
messages between programs, possibly running on different
computers. That allows for remote surveillance, controlling
as well as processing information on another computer. The
following paragraphs explain the main components needed by
the RS that are already provided by ROS [12].

The RS uses an implementation of Adaptive Monte-Carlo
Localization (AMCL) [13] provided by ROS. As shown in
Fig. 3, it estimates the robot’s position by processing two-
dimensional depth information from the Kinect and finding a
match in a given two-dimensional pre-drawn floor plan. In a
short training stage, AMCL needs a position estimation given
by the user in order to find the first match. As the robot
moves, a set of nearby positions is maintained that characerizes
possible matches in the near future.

The rough position of the robot is calculated using the
odometry data provided by a generic Roomba driver. As the
robot moves, AMCL uses the odometry data to update the set
of possible positions, and aligns the coordinate frame in which
the odometry data was recorded with the position estimated
by AMCL.

A three-dimensional point cloud is produced by the Kinect’s
driver. This information is transfered into a two-dimensional
depth scan, which is later matched against the floor plan by
AMCL.

The ROS offers GMapping as a component which is able to
perform SLAM in order to build a map of an environment [14],
[15]. To accomplish that, the wheel-odometry data is fused
with scans from the Kinect. This map can then be used by
AMCL to localize the system accordingly. However, due to the
limited range of the Kinect and the quality of our odometry,
recorded maps show a significant drift, if a long corridor was

Fig. 3: The TurtleBot in a corridor. The Kinects’ distance
measurements (green) are matched against the wall and an
indentation to a door. The door is drawn as closed. A set of
possible positions is displayed around the robot (purple).

mapped. Even so, we show another scenario in section IV-B,
that makes use of this software in our RS.

Figure 2 also shows a component called Move Base. It
allows the robot to drive automatically to a user-defined
destination. This can be used to direct the robot through a
building. However, direct user control is also possible and
preferable if a specific path shall be driven.

B. Map-Building

In order to localize the RS, AMCL needs a map of the
floor the RS is intended to drive on that provides sufficient
information to allow self-localization. Sufficient information
means that indentations to doors or pillars in a hallway are
mapped according to their real position.

Such a map can be recorded using the GMapping software
in ROS. With the quality of our wheel-odometry data and the
limited range of the Kinect, these maps would be prone to drift.
The RS could still be localized in that map, but as shown later
in Fig. 4, the positions could not as easily be compared with
the SUE. We would need better odometry data or a higher
precision of the Kinects in order to build an accurate map
with the RS itself.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Therefore, we decided to use a floor plan of the building we
obtained before driving. This floor plan has to be accurately
scaled in order to be able to compare positions to real-
world coordinates. It could be directly used by AMCL for the
localization process of the RS. But before using such a floor
plan, it might need to be edited regarding doors or markings
not belonging to walls or obstacles.

A floor plan does of course not contain furniture and other
obstacles. But rooms are typically not empty, therefore these
expressive features have to be represented in the map as well.
To picture a scenario: the robot may be localized closer to a
wall which is behind a locker, if the locker is misunderstood
as the wall itself. This would mean that the system is not able
to localize itself accurately. Therefore, we enhanced the floor
plan of rooms we want to localize the system in. This can be
achieved by using GMapping to build a local map of that room
or by measuring distances and updating the map by hand. The
first method is less prone to drift, than building a map of a
whole floor. This local map has to be inserted in the floor plan.
Since both maps have to be scaled, this can easily be done.

C. Middleware

ROS brings a lot of features, that can be directly put together
to build the RS. To meet additional needs, we developed the
following three components, which are started in the ROS
ecosystem: The generic Waypoint component, for collecting
position information in our RS produced by AMCL and in
the SUE. To allow for Waypoint to collect information of a
SUE, a Proxy software has to translate the SUEs data. The
Proxy itself has to be developed by the user separatly for
each SUE. The collected position information can then be
merged and analyzed by Pathcompare. Because these software
components both run on the same machine, no clocks need to
be synchronized. All position information are fused and logged
with a timestamp with a resolution of nanoseconds.

The Waypoint software also allows for re-driving a path. If
a SUE varies in its performance and thereby in its localization
results, it is crucial to be able to repeat that test run multiple
times. If the robot was directed through a test area by hand,
the recorded data of the RS allows Waypoint to automatically
drive the robot along that path again. While driving, Waypoint
has to maintain the speed as defined by the original run. If the
robot drives fast (which can be a valid evaluation scenario),
the SUE may not have enough time to communicate with its
infrastructure to establish position estimates due to possible
limitations. If the robot’s speed is slowed down, the test results
of the SUE may change significantly. Therefore, the timing is
essential if re-driven paths shall be compared to one another.
Algorithm 1 shows the functioning of this component. As a
requirement for that algorithm to work, the robot has to be
placed near the starting point of the path to re- drive.

While driving, the algorithm continuously computes the
linear and angular speeds necessary to reach the next position
by dividing the distance/angle to that position and the time
left. The time left is computed in line 7 by subtracting the
time, which the robot already drove on the path, from the

Algorithm 1 Re-driving a given path

1: path ← [(p1, t1), (p2, t2), . . . , (pn, tn)]
2: tpath ← t1
3: trun ← now()
4:
5: for each (p, t) in path do
6: while distanceTo(p) > 0.1m do
7: t∆ ← (t− tpath)− (now()− trun)
8: d← distanceTo(p)
9: a← angleTo(p)

10: if t∆ ≤ −1 s then
11: abort
12: else if t∆ ≤ 0s ∧ d > 0.4m then
13: abort
14: else if t∆ ≤ 0s ∧ d ≤ 0.4m then
15: break
16: end if
17: vlinear ← d/t∆
18: vangular ← a/t∆
19: if |a| > 40◦ then
20: vlinear ← 0m/s
21: end if
22: drive(vlinear, vangular)
23: end while
24: end for
25:
26: drive(0, 0)

time offset of the next position in the path. That time should be
positive, which means that the robot still has time to reach this
next position. If the time is negative, it means that the robot
should have reached that position in the past. As a limitation,
the robot is not allowed to be 1 s behind. This ensures that
the timing of the run can not exceed too much. The robot
is considered to have reached a position if it estimates its
position in a radius of 0.1m of the current targeted position
(line 6). If this radius is not yet reached and the time left
is less than 0 s, then the algorithm aborts if the distance to
the target is greater than 0.4m, otherwise it targets the next
position. The 0.4m radius serves as a recovery area, so that
the robot still can reach the next target if the current target was
slightly missed. The algorithm works best if target positions
are in front of the robot. If target positions are at an angle
greater than 40◦, the linear speed is reduced to zero to allow
the robot to align with the next target. This may look less
sophisticated, but considering the small angle differences of
position estimates of only a few degrees provided by AMCL,
this seems sufficient enough.

After a run was performed, Pathcompare calculates the error
of each position, the mean average error (MAE), the root
mean squared error (RMSE), the standard deviation, the error
variance and a list of the greatest position estimation errors.
It writes its results into a comma-separated-values file along
with the input data, allowing non-ROS-enabled software to do

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

further analysis. The input datasets are provided in the form of
ROS path messages, which are represented as to a list of pairs
where each pair (p, t) contains a position p and a timestamp
t. In order to evaluate a position p from the SUE’s path, we
must first find the related position p′ on the reference path.
Algorithm 2 shows the calculation of the position p′, which is
found in line 8.

Algorithm 2 Finding reference positions p′

1: reference ← [(p1, t1), (p2, t2), . . . , (pn, tn)]
2: path ← [(p1, t1), (p2, t2), . . . , (pn, tn)]
3:
4: for each (p, t) in path do
5: for each {(pn, tn), (pn+1, tn+1)} in reference do
6: if tn ≤ t ≤ tn+1 then
7: δ ← (t− tn)/(tn+1 − tn)
8: p′ ← pn + δ(pn+1 − pn)
9: analyse(p, p′)

10: break
11: end if
12: end for
13: end for

First, a position’s timestamp t contained in a pair which
shall be evaluated is matched to two corresponding pairs of
the reference path containing tn and tn+1, so that the condition
tn ≤ t ≤ tn+1 holds. The positions pn and pn+1 can then be
interpolated to obtain p′. It is a requirement that the robot
does not suddenly change its speed. If this is met, the linear
interpolation shown here calculates the position p′ sufficient
enough, considering the small position distances estimated by
AMCL, which are up to 25 cm, if the robot has been driving
with its full speed.

V. EVALUATION

We evaluate the map-building capabilities of the RS, its
general position error, applicability in common buildings and
path re-drive accuracy. All tests were performed in our office
building with a 60m long corridor and three vertically branch-
ing off corridors of 5 to 20m length. There are indentations
every few meters which are significant enough for visual
localization.

At first, we built maps with GMapping. While resulting
maps show inaccuracies of decimeters, they show also a
significant drift as shown in Fig. 4. This is due to errors in the
wheel-odometry data. Resulting maps could not be used for
a RS, because the mapping to real-world coordinates would
need additional work. To increase the quality of the results, the
robot would have to be equipped with more suitable sensors.
However, the result shows also that the local accuracy can be
sufficient for a localized map. Figure 5 shows an enhanced
section of the floor plan using GMapping.

To evaluate the localization capabilities we marked a 5× 9
grid of positions onto the floor at 30 cm intervals, as shown in
Fig. 6. As the robot was directed along the grid, its computed

Fig. 5: A precise floor plan of an obstacle-enhanced room. Red
shows a recorded path while the re-driven path is displayed in
blue.

positions were saved when it reached a marked position. In
total, 135 measurements were recorded during that test. The
results show an average position estimation error of 6.7 cm,
with a standard deviation of 4.0 cm. The maximum error
was 21.7 cm. As shown in Fig. 7, 96.3% of the position
errors were equal to or less than 15 cm. 80.0% were equal
to or less than 10 cm. This error should not interfere with
current indoor localization algorithms. However, it could be
minimized by using more expensive hardware. The experiment
was performed on our floor in a limited area, but due to the
repeating topology of the floor, the results are not limited to
that area.

As mentioned above, the corridors in which we evaluated
our system have significant features to both sides. These
features mostly consist of indentations to rooms or pillars. If
we would drive in a long corridor without these features, the
system would not be able to determine its position accurately,
since the wheel-odometry would be the only source with which
the system could perform self-localization along the corridor.
In short, there have to be enough features in the view of the

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Fig. 4: A recorded map in respect to a floor plan. The displayed overlay in red was created with GMapping.

Fig. 6: An evaluation of the position estimation error of the RS
in a corridor of our building. 5× 9 grid positions are marked
in 30 cm intervals.

Fig. 7: The error distribution of the localization test. The x-axis
shows the position error in meters, while the y-axis depicts the
percentage of measurements, that are equal to or less than this
position error.

Kinects to correct the position estimate. If the system is to be
localized in a room greater than the Kinects’ viewing ranges,
then multiple positions would qualify as the real one. This
limitation can be partly overcome by mapping dynamic envi-
ronment in rooms as we showed. Nevertheless, this limitation
should not apply in common office-like buildings.

Figure 5 shows a recorded drive in one of our office rooms
(red). After recording the drive, the RS was put in place to re-
drive that path (blue). Re-driven paths show a median distance
error of 10.1 cm. The maximum error was about 24.6 cm. The
variance is about 0.2 cm. Due to the programming as stated
in algorithm 1, the timing error can not exceed 1 s.

VI. USE CASE

To explain the usability of the presented system we illustrate
a simple use case with an exemplary SUE. For this purpose

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Fig. 8: Position estimates on the second floor of our office building.

we recorded the data of a series of different test runs. The
SUE consists of a modified version of the Modular Sensor
Board (MSB) A2 [16] node which is equipped with a Nanotron
nanoPAN 5375 [17] transceiver. This hardware enables the
sensor nodes to measure inter-node ranges using time-of-
flight in the 2.4 GHz frequency band. The experiments took
place on the first and second floor of our office building
during daytime. We conducted several test runs with different
paths on every floor to get representative samples of indoor
distance measurement conditions using varying anchor counts
and inter-anchor distances. As described in Section IV-C we
used a proxy to merge the position data of the RS with the
ground truth data for further evaluation.

Figure 8 shows one exemplary campaign of the conducted
measurements following a route among offices and labora-
tories with a few people walking around. The starting point
is marked “S”, the endpoint is marked “E” and the total
length of the path is about 100m. In this run, we use 17
anchors which are deployed throughout the building. Most of
the anchors are placed in office rooms with doors closed. Only
a small fraction of nodes are placed on the hallway, in case
of Fig. 8, there are four nodes. The path of the RS is plotted
in black. We use this reference data to evaluate two common
localization algorithms: Multilateration using non-linear least
squares (NLLS) [18], [19] and Min-Max algorithm [20], [21].
The results of both algorithms are plotted in Fig. 8 using
different colors. Merging the recorded reference data with
the data of the SUE which consists of a timestamp and
the measured distances to the anchor nodes, we are able
to numerically evaluate the performance of both algorithms.

Among these metrics are, for instance, the MAE, the RMSE,
the standard deviation and the variance of the algorithms.
Additionally, we can evaluate the accuracy of the distance
measurements using the same metrics and compare how well
the algorithms performed relative to the quality of the distance
measurements available. For the case of Fig. 8, the nanoPAN
achieves ranging precision of around 2.85m on average and
the RMSE is 4.32m. However, the ranging error can be as
large as 20m. We even encountered measurement errors up to
75m in rare cases.

With the presented SUE, common localization algorithms
achieve an average position error of a few meters in indoor
scenarios. For instance, NLLS has a MAE of 4.49m and Min-
Max has a MAE of 2.05m. Thus, the localization accuracy of
the RS with an average position estimation error below 7 cm
is clearly sufficient for evaluation of these algorithms.

VII. CONCLUSION

We presented a precise RS for indoor localization experi-
ments that is inexpensive and easy to use. The component-
based design around ROS allows the easy adaption to other
needs and specifications. Because the map-building process is
suffering from drift, the use of a precise floor plan is recom-
mended in which the system can localize itself accurately. The
system can enhance rooms in the floor plan with obstacles (e.g.
furniture) to allow localization where the walls in the floor
plan are hidden behind obstacles. A middleware that records
a driven path as well as the data produced by the SUE is also
presented. To enhance and harden the experimental results test
runs can be re-driven multiple times.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

The accuracy of the RS is limited by distance measurement
errors of a Kinect and the wheel-odometry of the Roomba.
Additional sensors like a gyroscope would increase the map-
building possibilities so that no precise floor plans of the
testing environment have to be used. A laser scanner could
increase the field of view significantly, which would greatly
enhance not only map-building, but also the localization
accuracy. Our RS is able to localize itself in empty rooms
smaller than 10m in width which should fit most indoor
scenarios. When using Kinects, the user has to assure that
enough mapped obstacles exist in the field of view to allow a
precise localization.

The feasibility of the RS is demonstrated by a use case
in our office building. There, the accuracy of the SUE is
much worse than the accuracy of the RS (6.7 cm vs. 205 cm).
Such differences in accuracy are common for radio based
localization methods. Consequently, the RS is sufficiently good
for evaluating such SUE.

We propose our approach as a cheap and general purpose
RS for indoor localization experiments.

REFERENCES

[1] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[2] Roomba 531 vacuum cleaner. [Online]. Available:
http://www.irobot.com/de/product.aspx?id=127

[3] Microsoft Kinect. [Online]. Available: http://www.xbox.com/en-
US/kinect

[4] M. Piras and A. Cina, “Indoor positioning using low cost gps receivers:
Tests and statistical analyses,” in Indoor Positioning and Indoor Nav-
igation (IPIN), 2010 International Conference on. IEEE, 2010, pp.
1–7.

[5] M. Bal, H. Xue, W. Shen, and H. Ghenniwa, “A test-bed for localization
and tracking in wireless sensor networks,” in SMC. IEEE, 2009, pp.
3581–3586.

[6] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci,
and J. Lepreau, “Mobile emulab: A robotic wireless and sensor network
testbed,” in INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, 2006, pp. 1–12.

[7] A. Prorok, A. Arfire, A. Bahr, J. Farserotu, and A. Martinoli, “Indoor
Navigation Research with the Khepera III Mobile Robot: An Experi-
mental Baseline with a Case-study on Ultra-wideband Positioning,” in
Proceedings of the IEEE International Conference on Indoor Positioning
and Indoor Navigation, 2010, pp. 1–9.

[8] M. Segura, H. Hashemi, C. Sisterna, and V. Mut, “Experimental demon-
stration of self-localized ultra wideband indoor mobile robot navigation
system,” in Indoor Positioning and Indoor Navigation (IPIN), 2010
International Conference on, sept. 2010, pp. 1 –9.

[9] The TurtleBot concept. [Online]. Available:
http://www.willowgarage.com/turtlebot

[10] K. Khoshelham, “Accuracy analysis of kinect depth data,” 2011.
[11] Precision of a Microsoft Kinect depth camera. [Online]. Available:

http://www.ros.org/wiki/openni kinect/kinect accuracy
[12] Robot Operating System. [Online]. Available: http://www.ros.org/
[13] D. Fox, “Kld-sampling: Adaptive particle filters and mobile robot

localization,” in In Advances in Neural Information Processing Systems
(NIPS, 2001.

[14] G. Grisetti, “Improving grid-based slam with rao-blackwellized particle
filters by adaptive proposals and selective resampling,” in In Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA, 2005, pp. 2443–2448.

[15] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE Transactions on
Robotics, vol. 23, p. 2007, 2007.

[16] M. Baar, H. Will, B. Blywis, T. Hillebrandt, A. Liers, G. Wittenburg,
and J. Schiller, “The scatterweb msb-a2 platform for wireless
sensor networks,” no. TR-B-08-15, 09 2008. [Online]. Available:
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-15.pdf

[17] “nanopan 5375 rf module datasheet, berlin, germany, 2009. [online],
available: http://www.nanotron.com.”

[18] I. Guvenc, C. Chong, and F. Watanabe, “Analysis of a linear least-
squares localization technique in los and nlos environments,” in Vehicu-
lar Technology Conference, 2007. VTC2007-Spring. IEEE 65th. IEEE,
2007, pp. 1886–1890.

[19] S. Venkatesh and R. Buehrer, “A linear programming approach to
nlos error mitigation in sensor networks,” in Proc. 5th international
conference on Information processing in sensor networks. ACM, 2006,
pp. 301–308.

[20] A. Savvides, H. Park, and M. B. Srivastava, “The bits and
flops of the n-hop multilateration primitive for node localization
problems,” in Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, ser. WSNA ’02. New
York, NY, USA: ACM, 2002, pp. 112–121. [Online]. Available:
http://doi.acm.org/10.1145/570738.570755

[21] K. Langendoen and N. Reijers, “Distributed localization in wireless
sensor networks: a quantitative comparison,” Comput. Netw.,
vol. 43, no. 4, pp. 499–518, Nov. 2003. [Online]. Available:
http://dx.doi.org/10.1016/S1389-1286(03)00356-6

