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Abstract—While in the last years many different methods
for indoor positioning have been presented, no single sys-
tem has emerged yet that satisfies the requirements of the
many different application scenarios. We propose to solve
this problem with a platform for hybrid positioning which
chooses the most suitable from all available sensor information
for position estimation. For that task, a sensor description
language is defined which allows for the description of different
sensors for indoor positioning, but also offers the possibility
to describe various sensor fusion algorithms or even existing
positioning systems. The contribution of our work is twofold:
The platform for hybrid positioning and the sensor description
language. The feasibility of our approach is demonstrated by a
prototypical evaluation of the sensor combination mechanism
and estimation component, showing that hybrid positioning
with a sensor description language is possible and offers
advantages over single existing or proprietary systems by being
able to cope with dynamically changing environments and
varying user preferences.

Keywords-Adaptive Indoor Localization, Opportunistic Sen-
sor Fusion, Sensor Description Language, Hybrid Positioning
Platform.

I. INTRODUCTION

Indoor positioning has been an active research area since
more than 15 years. Nevertheless, it has gained an even
higher attention since the mass market penetration of smart-
phones, cell phones with high computational power, internet
connectivity, and a large number of sensors. Being familiar
with outdoor positioning technologies such as GPS and
map services such as OpenStreetMap or Google Maps,
users would also benefit from the availability of position
information in large and complex buildings.

Over the years, many indoor positioning systems have
been developed using various technologies, positioning
methods, or techniques for sensor fusion. A similar variety
can be observed concerning the application scenarios and
use cases of indoor positioning, ranging from pedestrian
and robot navigation over interactive guides in museums
to ad hoc positioning without infrastructure in search and
rescue scenarios. Tracking of goods has other requirements
than surveying elderly people in ambient assisted living. In
the first case, multiple low-power sensors might be chosen
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for attachment to every item and then precisely tracked by
a dedicated infrastructure. On the contrary an old person
should better be equipped with a single sensor with no or
little expenses for additional infrastructure. Unfortunately,
there is still no ultimate positioning method available today,
which satisfies the requirements of most possible application
scenarios at low expenses.

The cost is one of the most limiting parameters of an in-
door positioning system. While systems with high accuracy
and precision often based on UWB [1] or lasers [2] (with
the magnitude of centimeters to millimeters) are available,
the cost of such systems limits the coverage to small areas,
where the high quality compensates the expenses. Cheaper
systems often based on inertial sensors [3], [4], WLAN [5],
[6], [7], or cameras [8], [9] suffer from inaccuracies, high
calibration efforts, or large latencies.

Another limiting factor is the provision of positioning
systems to the user. Some systems require dedicated sensors
or infrastructure [10], other systems work self-contained
on mobile phones [3]. Nevertheless, most systems need
to provide some kind of map data or reference system, a
communication link, or an interface for location determina-
tion. Some systems are limited to regions owned by certain
authorities, most communicate over proprietary protocols,
and even if you have a positioning system running in your
university it probably won’t work elsewhere, even if the
same sensors and infrastructure are available.

We propose to solve these problems with a platform
for hybrid positioning which chooses the most suitable (or
possibly a combination) from all available sensor informa-
tion for position estimation. The platform also offers sensor
discovery mechanisms and environmental information and
serves as a single service point for positioning. For that
task, a sensor description language is defined. The language
allows for the description of different sensors for indoor
positioning, but also offers the possibility to describe var-
ious sensor fusion algorithms or even existing positioning
systems. We define a sensor to be an entity measuring some
phenomenon, thus including also sensor fusion algorithms
and positioning systems to the definition. Furthermore, the
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language is able to serve as communication means between
several clients and the platform. Hence, the contribution of
our work is twofold: we present a novel sensor description
language and a platform for hybrid positioning based on that
language.

The platform consists of a sensor management com-
ponent, a sensor discovery mechanism, a component for
position estimation, and an advanced sensor combination
mechanism which dynamically chooses those sensors for
fusion and position estimation that are best with respect
to the user criteria. This is achieved by comparing the
capabilities and requirements of all available sensors, which
are described in the sensor description language, thus com-
puting all possible combinations of sensors and the estimated
properties of each combination. These are matched to the
user criteria and the best matching combination is utilized
for position estimation.

The rest of the paper is structured as follows: In the next
section, related work is presented and some differences to
our approach explained. Then follows the introduction of the
sensor description language PositioningML in Section III.
Section IV describes the platform and its components fo-
cusing on the reasoning and combination of several sensors,
preceding an application scenario and empirical evaluation
in Section V. The paper is finalized by a conclusion.

II. RELATED WORK

In this section, an short overview on positioning systems
and common sensor fusion mechanisms is given. The focus
is on opportunistic sensors since dedicated systems often
obtain sufficient accuracy without further fusion. In this
paper, opportunistic sensors are understood as sensors which
primary goal is not indoor positioning, but which can be used
for position estimation. Examples are WLAN cards, low cost
accelerometers and gyroscopes, cameras, and microphones.
Then a quick introduction to sensor fusion is given, fol-
lowed by a short presentation of existing sensor description
languages.

A. Single technology systems

WLAN positioning has been extensively researched in the
past years. In laboratory environments, the median accuracy
and precision of advanced systems can reach one meter [6].
Nevertheless, WLAN-based systems are error prone due to
interferences and attenuation effects induced for example
by humans in the environment [11]. While today’s standard
interfaces are limited in the use of time-based lateration tech-
niques [12], signal strength based lateration, or fingerprinting
enjoy great popularity. However, those systems are prone
to jump between consecutive position estimations and thus
lack capabilities in high quality tracking scenarios such as
a continuous navigation aid.

Positioning systems based on inertial sensors, i.e., ac-
celerometer, gyroscope, and digital compass, usually depend

on step detection, step length estimation, and step heading
detection [4], [3]. While those systems are especially suitable
for continuous positioning since they offer relative position-
ing information, the overall error accumulates over time.
When map information is available, it can be used to reduce
the accumulation by applying map matching techniques.
However, inaccurate sensors and building layout problems
such as symmetries [13] still prevent inertial sensors from
being a solution for reliable positioning over large distances.

Cameras offer multiple opportunities for position esti-
mation. Either consecutive images are compared and the
relative movement is deduced by the optical flow for dead
reckoning [14] or image recognition is applied on calibrated
databases [9]. However, camera-based systems can suffer
from problems with occlusion, people moving through the
field of view, high processing times, and high energy con-
sumption.

B. Bayesian Filters for Sensor Fusion

Due to the insufficiency of single technology systems,
most of today’s indoor positioning systems rely on a mul-
titude of sensors. Their measurements need to be combined
to overcome the shortcomings of each single source of
information. By using Bayesian filters, uncertainty of these
multiple sensors can be expressed and processed. Therefore,
most indoor positioning systems rely either on particle filters
or on Kalman filters for sensor fusion of heterogeneous
sources. Both present ways for recursively estimating the
state of a dynamic system such as the position, orientation
and velocity of a moving target. As usual with Bayesian
filters, both work with probability distributions and two mod-
els. One, the measurement model, describes the impact on
measurements on the probability distribution by constructing
the posterior probability density function. The second, the
system model, describes the evolution of the distribution
with time. Read [15] for a detailed introduction to Bayesian
tracking.

C. Platforms for Hybrid Positioning

In the past several approaches for positioning platforms
have been presented. One of the first approaches for struc-
turing location systems is the location stack by Hightower
et al. [16]. They refer to standard ways to combine measure-
ments from heterogeneous sensor sources, suggest a layered
architecture, and postulate that uncertainty in measurements
must be modeled and preserved to the application level.
Their architecture starts with a sensor layer for hardware
and software components. The measurement layer trans-
forms the raw data to canonical measurement types (i.e.,
distance, angle, proximity, or asserted position). The next
layer offers methods for transforming the measurements to
time-stamped probabilistic state estimation. The rest of the
layers concerns non-positioning relevant information and
were not implemented in the universal location framework,
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the implementation of the location stack [17]. Here, a
particle filter is utilized to fuse position estimated from
multiple sources with a motion model. While the location
stack provides valuable information how localization should
be included to applications, it is rather an abstraction than a
working platform for localizing with heterogeneous sensors
since no communication means or standardized interfaces,
especially for uncertainty representation, are given.

MiddleWhere by Ranganathan et al. [18] offers a mid-
dleware for handling multiple location sensing technologies
and a hybrid location model with symbolic and geometric
representation of the physical world. The software uses
adapters to map raw sensor data to a common representation.
This is processed via a provider interface where a location
service fuses multi-sensor information with a geometric
approach. While the adapters provide a powerful mechanism
for arbitrary sensors to be added to the system, the restriction
to geometric approaches is a disadvantage.

MagicMap is a project aiming at a platform for cooper-
ative positioning. Initially it was only designed for WLAN,
but today a multitude of RF-based technologies, GPS, and
inertial sensors are supported. Based on the received signal
strength the distance of a sensor to the transmitter can
be estimated. Those distance estimations are normalized to
avoid hardware dependent errors and then used for position
calculation by lateration [19]. For position calculation, the
position estimation by lateration can be combined in a
particle filter with a mobility model possibly supported by
inertial data. However, the system is limited to certain data
sources and concrete position estimation methods. A com-
mon interface for describing position estimation methods,
their capabilities and their uncertainty models is not yet
given.

In [20] Bohn and Vogt break with the classical sensor
description since they also allow whole systems to be seen
as sensors and thus allow sensors to require some kind of
other measurement input. These measurements are processed
by an event-based mechanism so that the platform can
include previously unknown sensors. However, their sensor
fusion only works with probabilistic position estimates on a
high level. A grid-based approach is used to fuse position
estimates by first accumulating the probability per sensor per
cell and then normalizing each cell to obtain a probability
density function on the full grid.

With MapUme [21], Najib et al. present a middleware
for location aware applications. The middleware provides a
platform for multi-sensor data fusion and a location service
working on both symbolic and geometric coordinates. The
layered architecture resembles the location stack and differ-
ent tasks can be distributed among several machines. For
adding new sensors or fusion mechanisms, interfaces need
to be implemented in the measurement component or the
fusion engine component respectively. While the approach
is very promising, we want to focus on the dynamics of

of available sensors, methods, and changes in user criteria
for our platform, thus introducing a more flexible platform
scheme.

D. Sensor Description Languages

Last but not least, a short overview on existing sensor
description languages is given. One of the first initiatives
was the Sensor Web Enablement (SWE) [22] supported by
the Open Geospatial Consortium (OGC). The goal is the
provision of arbitrary sensors over the internet for realizing
web-based sensor networks. The initiative defined standards
such as SensorML [23] and Observations & Measurements
(OM) [24]. SensorML is responsible for the definition and
description of sensor metadata, the measurement processes,
and transformations of measured data. It already supports
a rating of the sensor quality. OM defines a model for
domain independent representation of spatial or temporal
related measurements and is therefore especially suitable for
exchanging measurement data.

Another language, called the Sensor Fusion Modeling
Language [25], defines a communication model for tracking
systems. It allows the description of physical or functional
properties of systems including type of sensor, position,
and a description of the used sensor fusion mechanism.
Furthermore, uncertainty can be modeled by giving an
accuracy or confidence intervals for position estimates. The
language is focused on the description of the output and not
intended for the description of required input for tracking
systems.

The Sensor Abstraction Layer [26] allows to hide hetero-
geneous sensor sources behind a common interface. Sensor
descriptions are based on SensorML extended with service
access points and commands a sensor can carry out. One
of the great advantages is the automatic detection and
configuration of new sensors.

III. POSITIONINGML: A SENSOR DESCRIPTION
LANGUAGE

For interoperability with a multitude of sensors, algo-
rithms, positioning systems, environmental models, and
users, a standardized language for sharing and processing
information is defined. PositioningML is based on XML
and extends the use of SWE [22] with languages such as
SensorML [23] and OM [24] for the task of positioning.
Further elements from MathML [27] or UncertML [28] add
expressing power enabling the language to express even
complicated algorithms or the uncertainty of positioning
processes.

The description language is used for several tasks in the
platform. One of these is the description of sensors. We
define a sensor to be an entity measuring some phenomenon,
thus including also positioning and sensor fusion algorithms,
simulation models, and whole positioning systems to the
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Figure 1: Associations between main classes in PositioningML

definition. PositioningML defines a type AbstractPosition-
ingProcess as base for all positioning sensors, which is
derived by the SensorML type AbstractProcess.

Sensors for positioning can come in two different fash-
ions: Either the sensor represents a positioning method
described by the type PositioningMethod or a sensor fusion
mechanism described by the abstract type AbstractSensor-
fusion. At the moment, the only realization of the latter is
the BayesianFilterModel including standard sensor fusion
mechanisms such as Kalman and particle filters. Other
methods could easily be added to the language by adapting
the description of the Bayesian filters. Basic sensors, e.g.,
a compass, accelerometer, or camera, can be described by
standard SensorML types, thus a variety of sensors can be
included in the positioning process.

A. Bayesian Filter Model

Each Bayesian filter model can be described by a filter
method of type FilterMethod, which can have a textual
definition, a link to binary or source code in arbitrary
programming languages, or a complete description of all
the filter steps in MathML using the type ProcessMethod-
Extended. This enables the language to express algorithmic
details, allowing the transfer of program logic from providers
to the platform or even to client applications for terminal-
based positioning.

Besides a description of the filter method, a BayesianFil-
terModel is characterized by one or more perceptual models
described by the type PerceptualModel, a state transi-
tion model (StateTransitionModel), the current Belief, and
properties of the fusion method, which are given in form of
the type FusionQualityCharacteristics. Furthermore, input
and output of each filter model are defined. The input
consists of an observation vector and an optional control
input vector modeling known input characteristics of the
filter. The output is a state vector giving the state of a system
after the input observation is processed. It combines the
knowledge inferred by the state transition model and the
perceptual models.

The PerceptualModel describes the deduction of a state
from an observation or measurement. This model contains

a list of sensor descriptions from sensor types which mea-
surements can be processed by the model. Note that sensors
in this case can also include positioning methods, systems,
or sensor fusion mechanisms, as well as any basic sensors
described in SensorML. If deviations or inaccuracies of a
sensor are known, the information can be modeled as noise
of that sensor affecting the estimation of a state based on
a measurement. Noise can be described with UncertML for
complex distributions or MathML for simple functions. The
perceptual model can process an input vector of measure-
ments given in form of an AbstractState which is either re-
alized as SimpleState or OMState. A SimpleState consists
of one or several measurements of sensors together with a
timestamp and an optional belief representing the uncertainty
of each measurement. As an alternative, an OMState in the
standard OM syntax can be given for direct integration of
existing standards. However, it is at the moment not possible
to model uncertainty of measurements in OM syntax. A
perceptual model can also be described in detail by a
function, which is realized by a ProcessMethodExtended
element exactly as a FilterMethod. Furthermore, map or
environmental information such as walkable space can be
included.

The StateTransitionModel describes the transition of a
state over time. It can also be described by function of type
ProcessMethodExtended and is used to calculate the state
vector continuously in between measurements processed by
the perceptual model. Typically, state transition models refer
to movement models or movement prediction models.

Belief expresses the degree of uncertainty in a state based
on the inaccuracies in both the state transition and the
perceptual model. Depending on the Bayesian filter model
this can be in form of mean values and standard deviations
for Gaussian distributed states, e.g., in the case of a Kalman
filter, or a discretization of arbitrary distributions, e.g., the
particles of a particle filter. The Belief is given in form of an
UncertML element, offering several distributions and other
means to express statistical information. These statistical
representations enable comparison and processing between
different filter models.
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FusionQualityCharacteristics finally are essential for
the mapping of sensor fusion algorithms to sensors. This
includes the information for which types of data or systems
the fusion is suitable. Kalman filters for example work best
on linear systems with Gaussian distributed data. Hence, the
characteristics offer valuable decision support for determin-
ing suitable input for the fusion. Furthermore, the filter can
demand a certain number of dimensions of state or input
vector, be limited to a certain fixed number of states, be
able to express multi-modal distributions and so on. These
attributes are also defined in the FusionQualityCharacter-
istics.

B. Positioning Methods

A PositioningMethod is modeled by a list of input
sensors of the SensorML type AbstractProcess which are
required for the described positioning method. These sen-
sors can be other positioning methods, systems, sensor
fusion mechanisms or any basic sensors, either described
by PositioningML or SensorML. Instead of or in addition
to sensors, a number of PositioningMeasurements can be
given. The position estimation is described by a type Po-
sitioningEstimation. Both, PositioningMeasurements and
PositioningEstimations, can be described in arbitrary de-
tail from a textual description to the full functionality of
calculation steps by a ProcessMethodExtended element.
Each position corresponds to a certain ReferenceSystem.
Furthermore, a positioning method can utilize an arbitrary
number of the previously described sensor fusion mecha-
nisms given by AbstractSensorfusion elements. Similar to
fusion models, PositioningQualityCharacteristics are de-
fined to express accuracy, precision, latency, and other prop-
erties of the positioning method. Thus, positioning methods
for the diverse application scenarios can be distinguished
and compared. Finally, a PositioningMethod has a defined
input vector of measurements and a state vector as output.
The types PositioningMeasurement, PositioningEstima-
tion, and ReferenceSystem are described in more detail:

A PositioningMeasurement describes physical observa-
tions, requirements, transformations and qualities of mea-
surements. The observations are characterized in the same
way as an input vector in the case of the sensor fusion’s per-
ceptual model. In addition, a PositioningMeasurement is
characterized by so called observables, which are properties
derived from the measurements, e.g., a distance which could
be derived by loss in signal strength or signal propagation
time. For that purpose, reference points can be given. This
might be required for training data in a fingerprinting system
or to express the position of reference stations for lateration.
Furthermore, a PositioningMeasurement can refer to spe-
cial conditions, which are time-, value-, or token-dependent.
The condition limits the validity of a measurement for the
positioning method. Time conditions restrict the time and
value conditions the value of a measurement. The latter can

be utilized for example to limit the allowed measured signal
strength for distance computation from signal strength in a
path-loss model. Token conditions can be used to restrict
textual value descriptions to some regular expression.

PositioningEstimation describes the deduction of a posi-
tion from a PositioningMeasurement. Position estimation
can include the description of algorithms, environmental
maps and reference points. It can handle information about
reference positions the same way as a PositioningMeasure-
ment. A position estimation returns a state vector which
contains the position information the positioning method can
calculate. This is also the output state vector of the position-
ing method. PositioningEstimation is characterized by one
or more of five basic techniques for positioning. These are
angulation, lateration, fingerprinting, dead reckoning, and
proximity detection which can be extended for special cases.
Thus, positioning methods can be distinguished at this level,
requiring different sensors.

A position is described concerning some ReferenceSys-
tem. It can have an arbitrary format (symbolic, spatial,
global, local, absolute, relative, . ..) and serves as the context
for interpreting a position. For enabling transformations
between several coordinate systems on the platform, a trans-
formation scheme should be given to a standard reference
system such as WGS84.

IV. PLATFORM FOR HYBRID POSITIONING

In this section, the platform is presented starting with
requirements, then giving an overview, and finally describing
the components with a focus on the reasoning for the
combination of sensors.

A platform for hybrid positioning has to fulfill multiple
requirements originating from various application scenarios
and the inherent requirements from certain positioning meth-
ods. Other requirements come from the need for interoper-
ability of the platform with existing systems. We identified
the following requirements:

o A description of sensors is needed to include specific
sensor characteristics, but also expected data input and
output formats. Furthermore, such data formats as well
as user preferences and communication channels need
a standardized description. For this reason a description
language named PositioningML has been introduced in
Section III in detail.

« A matching between user preferences, sensors, and sen-
sor requirements should be possible to offer positioning
suitable for every situation.

o The platform should be able to cope with dynamically
changing environments, e.g., seamless outdoor and in-
door positioning, newly available or unavailable sensors
and changing user criteria during the positioning pro-
cess.

« It should be possible to dynamically combine multiple
sensors and their measurements, utilize sensor fusion
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mechanisms, and calibrate inaccurate sensors based on
knowledge from more accurate sensors.
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Figure 2: An overview of the components of the platform
with example sensors and users

To fulfill requirements, the platform consists of four
components (compare Figure 2). First a short overview on
the platform is given, before the components are described
in detail. One component consists of all the sensors cur-
rently available to the platform, which is called the supply.
Availability means a sensor is temporarily available (e.g.,
a positioning system of a supermarket is enabled or is
accessible at a time) and spatially available (e.g., a mobile
enters the area covered by an indoor positioning system,
sensors are plugged in, or server are connected). A sensor
discovery mechanism constantly supervises the sensors and
detects the unavailability of existing sensors as well as the
appearance of new sensors. Discovered sensors provide their
description in PositioningML, which is parsed and the sensor
then added to the supply. The most essential component is
the reasoner. It continuously accesses measurements issued
by a sensor from the supply, matches the measurement with
other sensors from the supply and generates a position esti-
mate suitable for the current user criteria. The reasoner has
access to environmental information which is provided by
the model provider and can also access former measurements
of registered sensors (e.g., last known GPS position as initial
position for dead reckoning method) as well as all sensors
from the supply. Another component manages users with
their criteria and devices.

A. Sensor Management and Discovery

The platform provides an interface for external sensors
to register and offer their observations to the platform.
The registration of new sensors and the availability check
of existing sensors are done in the component for sensor
discovery. Sensors are described by corresponding XML-
types of PositioningML defining the capabilities, the pos-
sibly required input vector of data, and the observations as

output vectors. New measurements and new sensors generate
events which are handed to the reasoner component for
further processing. The sensor management component also
serves as a transparency layer for sensor abstraction and
handles the communication between platform and sensors
via the sensor interface. The syntax of messages is given by
PositiningML. So a provider of an external sensor can easily
integrate it to the platform by adding a communication stub
for interpreting PositioningML messages.

The sensor discovery component is responsible for finding
available sensors and adding them to the platform. For this
task, common service discovery mechanisms such as lookup-
server or agent-based systems can be used. This component
also checks the availability of existing sensors and removes
sensors which are no longer available. All currently available
sensors are managed in a database suitable for dynamic
environments. This is needed as the number of sensors in the
supply changes just as their properties such as workload and
power consumption. Their interfaces are made available for
the reasoner component. If a new sensor becomes available,
its PositioningML description is stored in the database.
The various SensorModels representing physical or logical
sensors, as well as sensor fusion algorithms and positioning
methods are processed by the reasoner.

B. User Management

This component manages the platform’s users and their
criteria. A user can have certain criteria such as energy
consumption, positioning accuracy, or needs a positioning
method without former training sequences, restricting the
use of certain methods or sensors. The criteria are utilized
by the reasoner component, meaning that those sensors
are combined for positioning which output and processing
characteristics such as processing time are most suitable
to the criteria. If a user has all the sensors of a modern
smartphone available and his criteria are low energy con-
sumption and street level accuracy, then GPS should be
replaced by WLAN positioning, dead reckoning and map
matching. If criteria are conflicting, the user can either give
priorities or the platform tries to fulfill them as best as
possible. This means for example choosing the method with
the lowest energy consumption from all methods fitting a
certain accuracy requirement. Note that our definition of a
user also includes non-human targets such as objects and
that it is also possible to obtain the position of another user.
This should surely be restricted out of privacy concerns, but
the rights management of the platform is outside the scope
of this paper.

C. Model Provider

The model provider stores and manages environmental
information such as floorplans, maps, and pattern matching
databases, e.g., for fingerprinting algorithms. It offers coor-
dinate transformation services between models and a global
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positioning system such as WGS84. For this task, several
parameters for each map such as the shift, rotation, and scale
need to be defined and provided together with each model.
Models are assigned a unique identifier and an absolute
positioning system should always refer to this id when re-
turning a position. Environmental information is exchanged
in a standardized format. While fingerprint databases can be
described in PositioningML, building models can either be
exchanged as bitmaps conform to a certain color scheme
(i.e., black walls and white walkable space) or in a building
description language such as BIGML [29].

D. Reasoning and Combination

The main component of the platform is the reasoner. It
has the task of processing new measurements, compare them
with user criteria, compare SensorModels of the supply to
each other, and decide how to further process measurements
according to their SensorModels. If the measurement already
fits to user criteria, e.g., if it corresponds to a position
estimation, it can be stored in a database and/or provided
directly to the user. If the measurement needs to be further
processed, e.g., in the case of raw data, the reasoner checks
whether it has the means to do the processing itself or assign
the task to another sensor. When a measurement is sent
to another sensor, which description declares its ability to
handle the measurement, the sensor’s answer is again given
in form of a new measurement. The checking procedure
is explained in more detail below. Communication with
external sensors is done via PositioningML. Whenever the
reasoner or a sensor requires environmental information such
as a map, topological data, or a fingerprint database, it can
be provided by the model provider to the reasoner and then
further distributed to the sensors.

Since the event of a new measurement usually occurs
more often than changes in the available sensors, the work-
flow of processing measurements, i.e. the reasoning, can
be optimized for a single user. For efficiently calculating
a position from a fixed set of heterogeneous sensors, the
process of reasoning should be carried out only once by the
following steps:

1) For each sensor model representing a positioning

method the required input sensor models are found.
This is done by matching the result vectors of the
sensor candidate with the required input vector. If both
fit, a link is established. If the input only fits partially,
the search is continued for the missing parameters. At
that point the in Section III-B mentioned observables
and basic techniques for positioning are matched. A
sensor delivering distances can be used in circular
lateration methods. Here, the method can also be
supplied with environmental information.

2) For each sensor model representing a positioning

method available sensor fusion mechanisms specified
for a positioning method are found and linked to

the method. If several fusion mechanisms need to be
processed in a certain order, they are linked in that
order. The particularity of the reasoner is, however,
that other sensor fusion mechanism of the supply not
specified for that positioning method can be linked.
This is done in the next step.

3) For each sensor model representing a sensor fusion
algorithm, all positioning methods or systems are
found and linked the sensor fusion algorithm can
process. For this task, the state transition model and
the control input vector are analyzed and compared
to the input and output of the candidate sensors. Input
data is compared in order to fuse signal data on a lower
level, output data in order to fuse positioning results
on a higher level. The decision is also based on the
quality criteria of the fusion algorithm. It is checked
for example if the filter demands a certain number
of dimension for data to be fused. For all matching
sensors, links are established.

4) For each sensor model representing a sensor fusion
algorithm all further required sensors are found that do
not necessarily correspond to already linked sensors.
This is achieved by matching the sensor fusion’s input
vector to the candidate sensor’s output similar to
step 1. In this step, environmental models are also
distributed to the sensor fusion mechanism.

5) Finally, each of the linked process chains is evaluated
with respect to the user criteria resulting in optimal
positioning for the user from the current supply. If
enough energy or processing capabilities are avail-
able, multiple process chains can be executed and
the best result returned to the user. Besides returning
a positioning result to the user, it is also stored
at the reasoner. Thus, it can be processed by other
positioning or sensor fusion methods, e.g., as reference
points for dead reckoning methods, fusion with other
positioning results, or as input for a perceptual model.

This process should be carried out in the case a new sensor
becomes available, has disappeared, or the user criteria
have changed. An example is given in the prototypical
evaluation. After finishing these steps, the processing of each
new measurement can directly follow the established links
without the need of further reasoning.

E. Theoretical Evaluation

The problem of the dynamic combination of different
sensors, positioning systems, and algorithms for position
determination or sensor fusion is hereby solved by the fact
that all components are described as necessary so that de-
pendencies and combination possibilities can be determined.
Thus at any instant the best combination of sensors of
the supply can be calculated which is eventually used for
position estimation.



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

The platform has some advantages over similar ap-
proaches in literature. The main strength is its flexibility, al-
lowing to include various sensors, use them for positioning,
and to operate on portable devices such as smartphones or
in a server infrastructure. It can be administered by building
operators for local use or as a large scale solution for global
operation.

The platform enables the provision of models, positioning
methods, algorithms over the boundaries of the platform
itself. This means that clients can be provided with so
detailed descriptions of algorithms that automated code
generation mechanisms can be utilized to even port the
position calculation to clients of the platform, allowing for
self-contained or privacy preserving positioning on mobile
devices or the computation of complex algorithms on a
server for energy preservation on a mobile device.

V. APPLICATION SCENARIO AND EVALUATION

In this section, a prototype of the platform at our uni-
versity is evaluated. The evaluation concerns the ability to
handle heterogeneous sensor data as well as changing sensor
availability and information fusion.

A. Scenario

To demonstrate our approach, we applied the developed
platform to a case study. We assume that a student is using
the positioning platform and his mobile device for navigation
to a lecture room in the university building. Therefore,
the student has specified certain criteria for the current
positioning process: The accuracy of the positioning process
should be suitable for navigation and the calculation of the
position may need a maximum of three seconds.

The platform recognizes these user criteria and the mobile
device with his GPS sensor, WLAN sensor, accelerometer
and compass. These sensors are described in the Position-
ingML language. Afterwards, the platform waits for an
absolute position estimate, which is in this case returned
from the GPS position sensor since no matching WLAN
positioning method is found for the active WLAN scan
results. The user criteria are met and the positioning is
started. Since the platform incorporates a step detection
algorithm, it can also calculate the student’s mean step length
from his GPS positions and save it for later processing.

Subsequently, we assume the student enters a building,
where the platform detects an existing WLAN infrastruc-
ture and WLAN fingerprint database described in Position-
ingML. Furthermore, a particle filter based on accelerometer
and compass as well as a simple kNN-algorithm located on
a dedicated server are detected and added to the available
sensors. Since no GPS position is returned for three seconds,
the platform checks registered algorithms and positioning
methods available for the user. Its intent is to find an
algorithm, which can offer an indoor position fix according
to the user criteria. Since the particle filter is not yet

initialized, the simple kNN-algorithm is selected and the
positioning is seamlessly continued.

During his movement inside the building, the number of
visible WLAN access points strongly fluctuates, as well
as their signal strengths. To improve the stability of the
positioning process and to retain accuracy of positioning,
calculation speed and energy consumption, the platform
checks sensors and algorithms for use in the positioning
process. The particle filter is used after an initial position is
given by the kNN-algorithm. Alternatively a GPS-fix near
the building could be used for initialization. Accelerometer
and compass data from the mobile device are sent to the
reasoner and handed on to the interface of the server hosting
the particle filter. There, the data is processed and combined.
Additionally, the platform is able to provide the filter with
a personalized mean step length of the user calculated from
positions estimated by previously executed methods. The
positioning results of the particle filter are returned to the
platform and, when matching the user criteria, handed on to
the student on his mobile phone. While the filter’s accuracy
is higher than that of the kNN-algorithm, the particle filter
is utilized for positioning. If the WLAN position is more
accurate it is returned to the user and used for reinitialization
of the particle filter.

B. Platform Capabilities

The scenario stresses some of the platform’s capabilities.
It is not only able to handle measurements from heteroge-
neous sensor sources, but also to provide positioning meth-
ods and sensor fusion algorithms with the required input
data. Position data from several sensors can be evaluated
with respect to the belief and the platform can decide how
to proceed.

In the scenario, the estimated accuracy of position infor-
mation is used to decide which position should be sent to the
user. As long as GPS is available, it is used for positioning.
At the same time, step detection is carried out to calibrate
the step length of the user with the measured GPS distance.
When GPS is not or no longer available (after a certain
timeout, in this case the three seconds update time from
user criteria), an alternative in form of WLAN positioning
is found and also used for initialization of the particle
filter. The WLAN positioning method is provided with a
fingerprint database by the platform and the particle filter
with the user’s mean step length, a map for map matching,
and an initial position. Subsequently, the kNN algorithm and
particle filter steps are executed in parallel. The reasoner
compares the accuracies of positions (given in form of the
Belief) estimated by both methods and returns only the more
accurate position to the user. In case of additional energy
constraints, the method with a better overall accuracy could
have been utilized or the more energy efficient method when
its accuracy is sufficient.
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Figure 3: Two tracks corresponding the scenario, estimated track in red (left) and blue (right), real tracks in black.

What is more, the platform can directly provide environ-
mental and fingerprint information and utilize the position
information to support the search for the right building
model. At first (if available and timely) the last known world
coordinate can be transformed to a local coordinate and the
distance to the available models calculated. When a model
is near and at least three access points in the database corre-
spond to access points in the current WLAN measurement, it
will most probably be the environment the user is situated in.
Multiple candidate models can be further distinguished by
including all candidates in position estimation and returning
the model with better fitting fingerprint data.

Last but not least, the platform can provide position
information relative to all available models, transform the
coordinates and thus allows providing the position informa-
tion in the form needed by the user. Existing outdoor LBS
can so also use indoor position information transformed to
world coordinates offered by the platform.

C. Prototypical Evaluation

The platform capabilities in the scenario were evaluated
concerning two tracks at our site. Both start some distance
away from the building and end inside it. The switching
of positioning technology works reliable. Note that the
GPS signal often failed a short distance before entering
the building. Especially while recording the blue track on
the right side in Figure 3, the GPS position was quite
inaccurate and GPS support failed already 15 meter before
entering. The largest distances between real and estimated

tracks at that point have come from the timeout of three
seconds as well as the fact that the fingerprint database
only had reference point inside the building. Nevertheless,
the indoor positioning was successfully applied and very
accurate position information returned.

VI. CONCLUSION

In this paper, we introduced PositioningML, a sensor and
position description language based on SensorML. The main
elements of the language where explained and the special use
for a platform for hybrid positioning stressed. Furthermore,
the platform and their components for sensor management,
user management, model provider, and reasoning and combi-
nation were described in detail. The platform offers seamless
positioning based on heterogeneous sensors in dynamically
changing environments while fulfilling certain user criteria
such as positioning accuracy, position update time, or en-
ergy constraints. A prototypical evaluation underlines the
platforms capabilities and serves as a proof of concept in a
seamless outdoor-indoor positioning scenario.
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