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Abstract—Due to the recursive and integrative nature of zero-
velocity-update-aided (ZUPT-aided) inertial navigation systems
(INSs), the error covariance increases throughout each ZUPT-
less period followed by a drastic decrease and large state estimate
corrections as soon as ZUPTs are applied. For dead-reckoning
with foot-mounted inertial sensors, this gives undesirable dis-
continuities in the estimated trajectory at the end of each step.
However, for many applications, some degree of lag can be
tolerated and the information provided by the ZUPTs at the end
of a step can be made available throughout the step, eliminating
the discontinuities. For this purpose, we propose a smoothing
algorithm for ZUPT-aided INSs. For near real-time applications,
smoothing is applied to the data in a step-wise manner requiring
a suggested varying-lag segmentation rule. For complete off-
line processing, full data set smoothing is examined. Finally,
the consequences and impact of smoothing are analyzed and
quantified based on real-data.

I. INTRODUCTION

Pedestrian dead-reckoning systems constructed around foot-

mounted inertial measurement units (IMUs) have shown re-

markable tracking performance [1]–[6]. The potential appli-

cations range from blue-force tracking, ambient living/smart

offices, and ambulatory gait analysis. These navigation sys-

tems are commonly implemented as zero-velocity-update-

aided (ZUPT-aided) inertial navigation systems (INSs). Owing

to their integrative and recursive nature, the error covariance

increases throughout each step and “collapses” at the end

of the step when large corrections to the state estimates are

applied. These large corrections complicate motion analysis

and can be distracting for visualization. The situation is

illustrated in Fig. 1 where multiple tracked steps are plotted

beside each other. See also Fig. 5-6 in the end of the article for

illustration of the behavior of the covariances. Unfortunately,

for applications with tight real-time constraints, this behavior

is unavoidable, since every estimate corresponds to the best

estimate including all information up until that time instant.

However, for many applications, some degree of lag (non-

causality) can be tolerated and the information provided by the

ZUPTs at the end of a step, causing the discontinuities, can

be made available throughout the step. However, incorporating

this information requires some non-causal filtering. Conse-

quently, to eliminate the discontinuities and unsymmetrical

covariance over the steps, the implementation of a smoothing

filter for a ZUPT-aided INS is considered. To our knowledge,

no treatment of smoothing for such systems has previously

been presented, even though extensive literature exists on the

general subject.
The remainder of the article is structured as follows. In

Section II the underlaying ZUPT-aided INS is reviewed. In
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Fig. 1: Steps from a straight-line trajectory as tracked by a ZUPT-
aided INS. Large corrections causing apparent discontinuities can be
seen at the end of each step. Note the difference in scale between
the xy-plane and the z-axis.

Section III the smoothing problem is introduced and the gen-

eral smoothing formula is given. We argue that the costumary

ZUPT-aided INS filtering cannot be mapped to the smoothing

formula and revert to an open-loop implementation of the

same. Also since the measurements (the ZUPTs) are irreg-

ularly spaced and appear in clusters, a varying-lag smoothing

rule is necessary and therefore introduced. By combining all

of the different considered aspects, the proposed smoothing

algorithm for a ZUPT-aided INS is given. Finally, in section

IV, the impact of the smoothing throughout the steps is

quantified on real data.

Reproducible research: A Matlab implementation

of the suggested smoothing algorithm is available at

www.openshoe.org.

II. ZUPT-AIDED INS

Conceptually, the ZUPT-aided INS consists of an inertial

measurement unit (IMU), giving specific force and angular rate

measurements, and a Kalman type of filter, giving navigation

state estimates. In the following subsections, the customary

filtering implementation is reviewed.

A. Inertial navigation

A foot-mounted IMU is most likely of strap-down type and

the IMU measurements need to be transformed from the sensor

frame to the fixed navigation frame. Therefore, in the first place

the measurements taken by the gyroscope are integrated to find

the relative orientation from one frame to another. The relative

978-1-4673-1954-6/12/$31.00 c© 2012 IEEE
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orientation is represented with quaternions qn and updated

with

qn =

[
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(‖ωn‖Ts
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T , Ts is the sampling period of the

system, n is a time index, ωi
n is the angular rate measurement
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(2)

is the quaternion update matrix. However, the orientation

might be equivalently represented with the rotation matrix

Rn ⇔ qn or the Euler angles θn ⇔ qn. For clarity, we

will use the different representation interchangeably.

Once the current orientation is known, the specific force

measured by the accelerometers fn can be expressed in the

navigation frame. This allows a compensation to be made for

the gravitational acceleration g = [0, 0, 9.81]T

an = Rnf
b − g (3)

which yields the acceleration an in the navigation coordinate

frame.

Finally, the inertial acceleration an is integrated to get the

position pn and velocity vn. Since the frequency is high and

the variables discrete, the acceleration an can be considered

constant between two time samples and the basic equations of

motion are applied as mechanization equations

pn = pn−1 + vn−1Ts +
1

2
anT

2
s (4)

vn = vn−1 + anTs. (5)

Concatenating the position, velocity, and orientation represen-

tation into a navigation state vector xn = (pn,vn, θn) allow

us to describe equations (1)-(5) as a state space system

xn = fmech(xn−1, fn,ωn). (6)

Together with the IMU, this state space system makes up the

INS.

B. ZUPT-aiding

Unfortunately, the errors of the state estimates as propagated

by the INS increase rapidly with time. Therefore, additional

information is required for correcting the estimates. In the

current scenario, pseudo-measurements in the form of ZUPTs

are used. The idea underlying the ZUPTs is to detect the

state when the shoe is stationary and, hence, its velocity is

supposedly zero. The system is considered stationary if

T ({ωi, f i}Wn
) < γ

where T (·) is some test statistics, {ωi, f i}Wn
is the inertial

measurements over some time window Wn, and γ is some

threshold. See [7] for further details about zero-velocity de-

tection.

When the system is stationary, the estimated velocity as of

(6) can be treated as a pseudo-measurement of the velocity

estimation error. Together with a deviation model of (1)-(5)

δxn = Fnδxn−1 +wn (7)

where δxn is the deviation of the estimated navigation states

form the true states, this can be used to estimate δxn with a

Kalman type filter. This gives the so called INS aiding. For

further details on this see [8]. Note that, as argued in [9],

systematic sensor errors are difficult to model and estimate

and therefore no such states are included in δxn.

The final equations used by our ZUPT-aided INS are

Initialization: x̂0 ← E[x0], P0 ← cov(x0)
Loop: n = 1 to end of data
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% Time update

x̂n = fmech(x̂n−1, fn, ωn)

Pn = FnPn−1F
T
n +GQGT

% Measurement update

if T ({ωi, f i}Wn
) < γ





































y

Kn = PnH
T (HPnH

T +R)−1

δx̂n = Knv̂n

Pn ← Pn(I−KnH)

% Compensate internal states
[

p̂n

v̂n

]

←

[

p̂n

v̂n

]

+

[

δp̂n

δv̂n

]

R̂n ← (I3 −∆n)R̂n

δx̂n ← 0

(8)

where Pn = cov(δx̂n) is the error covariance matrix, G is

the process noise matrix, Q = cov(wk), H = [03 I3 03] is the

observation matrix, K is the Kalman gain, and

∆n =





0 −δxyaw
n δxpitch

n

δxyaw
n 0 −δxroll

n

−δxpitch
n δxroll

n 0



 .

The above algorithm is of closed-loop complementary type

where for each iteration n, the estimated state x̂n is cor-

rected by the additional measurement (the ZUPT) through

the estimated deviation δx̂n. This is the customary way

of dead-reckoning with a ZUPT-aided INS. However, direct

implementation of a smoothing algorithm is not possible.

The next section explains the motivation and introduces the

modifications done to the algorithm in order to achieve a

smoothed ZUPT-aided INS.

III. SMOOTHING

The customary algorithm (8) gives the behavior illustrated

in Fig. 1. The problem is that the information provided by the

ZUPTs is abruptly introduced at the end of the step. This can

be mitigated by smoothing.
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A. General smoothing

The goal of a smoothing estimation process is to determine

the estimated state vector x̂n|N , where a subscript n|N is

used to denote the estimate of the nth time instant given all

information (in our case, the ZUPTs) up to N where n < N .

This is the so called smoothing problem. We have analyzed

different algorithms englobed in the fixed-interval smoothing

problem, which aims to calculate x̂n|N from a fixed set of

measurements {ỹ0, ỹ1...ỹN} for every n ∈ {0, 1, ..., N}.
Fixed-interval smoothing problems have been the considered

smoothing algorithms because the structure of the signal is

considered to fit well with this method. By dividing the signal

in segments directly related to a step, the information provided

by the ZUPT at the end of the step giving the sharp correc-

tions can be made available throughout the whole step via a

smoothing algorithm. For many applications, some degree of

lag (non-causality) can be tolerated such that smoothing can be

carried out step-by-step and, thus, a near real-time behavior

of the smoothing is achieved. Among the different types of

fixed-interval smoothing algorithms, the Rauch-Tung-Striebel

(RTS) formula has been used, since it presents a straight-

forward relationship with the previous customary ZUPT-aided

INS algorithm. The RTS formula is

Loop: n = send − 1 to sstart












y

An = Pn|nΓ
T
nP

−1

n+1|n

χ̂n|send
= χ̂n|n +An(χ̂n+1|send

− χ̂n+1|n)

Pn|send
= Pn|n +An(Pn+1|send

−Pn+1|n)A
T
n

(9)

where χ̂n|n is some arbitrary state vector, Γn is some related

system matrix, and the smoothing has been applied over the

interval [send, sstart] where send > sstart. The initial conditions

χ̂n|n and Pn|n are provided by the forward Kalman filter.

The RTS formula (9) cannot be directly applied to the esti-

mation (8). This is because of the internal compensation in (8)

changing the value of δx̂n preventing smoothing from being

directly applied to it. This problem can be solved by simply

avoiding the internal compensation and instead propagate (8)

open-loop. In this case the deviation state estimates need to

be propagated with

δx̂n|n−1 = Fnδx̂n−1|n−1

since they are no longer set to zero. By running the filter

open-loop, the estimation formula can directly be applied to

the deviation states δx̂n−1

Loop: n = send − 1 to sstart












y

An = Pn|nF
TP−1

n+1|n

δx̂n|send
= δx̂n|n +An(δx̂n+1|send

− δx̂n+1|n)

Pn|send
= Pn|n +An(Pn+1|send

−Pn+1|n)A
T
n .

However, once the smoothing has been applied, nothing pre-

vents the internal compensation from being implemented.

Time

γs

Velocity
covariance

ZUPTs ZUPTs

τs

Segment here

Fig. 2: Velocity error covariance increases along a step and decreases
drastically when the ZUPTs are applied. During the steady phase of
a step, a no-ZUPT decision can be made. These erroneously decided
segments are short; the covariance increases but does not trespass the
selected covariance threshold.

B. Data segmentation

The aim of choosing a fixed-interval smoothing problem

is to implement a near to real-time smoothing algorithm by

applying the smoothing in a step-wise manner. As pointed out,

the fixed-interval problem fits with the step by step structure

of the signal. However, some kind of segmentation rule that al-

lows to create the data segments to be smoothed is still needed.

Since the measurements (the ZUPTs) are irregularly spaced

and appear in clusters, we propose a varying-lag smoothing

rule based on measurement availability and covariance and

timing thresholds. Throughout a step, the velocity error co-

variance monotonically increases until the stationary phase

of the step is detected, when the error covariance drastically

decreases. However, the detection of the ZUPT intervals is not

perfect and during the stance phase a no-ZUPT decision can

be made. Nevertheless, these determined no-ZUPT segments

during the steady phase of the step do not last for a long

time. Soon, a ZUPT is detected again and the covariance

decreases once more. Since these erroneously determined no-

ZUPT segments are short, the velocity error covariance cannot

increase as much as during the non-stationary phase of the

step. Therefore, to properly segment a step, a sum of the

velocity error covariances threshold γs to be crossed top-down

is fixed to decide the segmentation, as shown in Fig.2. The

threshold must be high enough to not be affected by the error

covariance increase during these erroneously decided short no-

ZUPT segments.

Unfortunately, direct segmentation at the point where the

velocity error covariance threshold γs is trespassed leads to an

incorrect behavior of the smoothing algorithm. At this point,

the velocity error covariance has not converged yet and hence

the information provided by the ZUPT is not fully available

in the segment. Despite this, if the segmentation is applied a

constant time after the crossing of this covariance threshold,

the information given by the ZUPT is available. Therefore, a

time threshold τs [s] is fixed. When the covariance threshold

γs is trespassed, the Kalman filter continues running normally

for the next τs seconds, when the segment is cut. The proposed

segmentation rule is summarized in Fig. 2.
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C. Suggested 3-pass algorithm

Considering the specific features shown along this section,

the proposed smoothing algorithm is given in Alg. 1. The

algorithm is a 3-pass algorithm. On the 1st pass, it runs the

open-loop ZUPT-aided INS. The forward run is temporarily

suspended, by the data segmentation, giving a 2nd backward

pass adding the smoothing. Finally, the algorithm performs a

3rd forward pass in which the estimated deviations are used

to correct the navigational states. The last pass continues up

to the point where the 1st forward pass stopped, where the 1st

pass forward continues again. The 3rd forward pass effectively

closes the loop and, therefore, the algorithm can be viewed as

mixed open-closed-loop filtering.
It should be noted that compared to (8), the memory

requirements increase, since for each segment storing δx̂ and

P is necessary for the smoothing. However, the covariance

increases rather linearly and if memory is a concern, a subset

of the covariance values P could be stored and used to

interpolate the rest on the backward pass.

IV. EXPERIMENTAL RESULTS

We have compared the smoothing effect over two different

implementations of the smoothing algorithm. The first is a

segmented smoothed ZUPT-aided INS which corresponds to

the formulas shown in Alg.1 with τs = 0.04 [s.]; whereas

the second corresponds to a non-segmented smoothed ZUPT-

aided INS which corresponds to the same formulas but without

evaluating the segmentation rule (τs = ∞). Hence, the

non-segmented smoothed ZUPT-aided INS corresponds to a

smoothing of the whole data set (off-line processing of the

data). Thus, consequences of near real-time processing can

be compared with off-line processing of the data, where the

information provided by all of the future ZUPTs is known.

All data has been collected with OpenShoe units [5].

The effect of the smoothing algorithm in an estimated

trajectory is shown in Fig. 3. This figure shows the achieved

smoothing effect compared with the estimated trajectory by

the customary (8). The estimated smoothed trajectories are

almost perfectly overlapping and the differences between the

segmented and non-segmented implementations are small. Fig.

4 shows the result of the smoothing over multiple steps, for

the segmented ZUPT-aided INS implementation. The graph

shows the aligned xy-evolution of 20 steps of a pedestrian

walking at 3.5 km/h. It can be seen how the sharp correction

from the customary ZUPT-aided INS are nearly negligible for

the smoothed ZUPT-aided INS.
In the implementation some sharp corrections in the smooth-

ing have been experienced. These appear when there are large

accelerations and rotations and large cross-couplings between

heading and the position states. These problems are believed

to be due to problems with the linearization in (7). They can be

mitigated by zeroing out the cross-coupling between heading

and position states. However, in this case the covariance

estimates in the filter will not be correct, even though the

state estimates do not change significantly.

Algorithm 1 Pseudo code for the proposed 3-pass smoothing

algorithm.

Initializ.: x̂0 = E[x0], δx̂0 = 0, P0 = var(x0),
c = 0, sstart = 1, send =“end of data”

Loop while sstart < send
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% Forward Kalman filter

Loop: n = sstart to send
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% Time update

x̂n = fmech(x̂n−1, fn, ωn)

δx̂n|n−1 = Fnδx̂n−1|n−1

Pn|n−1 = FnPn−1|n−1F
T
n +GQGT

% Measurement update

if T ({ωi, f i}Wn
) < γ













y

Kn = Pn|n−1H
T (HPn|n−1H

T +R)−1

δx̂n|n = δx̂n|n−1 −Kn(δv̂n|n−1 − v̂n)

Pn|n = Pn|n−1(I−KnH)

% Segmentation rule eval.

if c > 0

↓ c = c+ Ts

if ‖diag(Pv
n−1)‖ > γs ∧ ‖diag(Pvel

n )‖ ≤ γs ∧ c = 0

↓ c = Ts

if c > τs








y

send ← n

break loop

% Smoothing

Loop: n = send − 1 to sstart












y

An = Pn|nF
TP−1

n+1|n

δx̂n|send
= δx̂n|n +An(δx̂n+1|send

− δx̂n+1|n)

Pn|send
= Pn|n +An(Pn+1|send

−Pn+1|n)A
T
n

% Internal state compensation

Loop: n = sstart to send
















y

[

p̂n

v̂n

]

←

[

p̂n

v̂n

]

+

[

δp̂n|send

δv̂n|send

]

R̂n ← (I3 −∆n|send
)(R̂n)

δx̂n ← 0

sstart = send + 1, send = “end of data”, c = 0

Fig. 5 shows the smoothing effect over the velocity error

covariance. For (8), the error covariance increases along a

step until the information provided by the ZUPT becomes

available, where the error covariance decreases drastically.

For the smoothed implementations, the information provided

by the future ZUPTs is also available. Therefore, the highest

error covariance value is in the middle of the step, which is
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Fig. 3: Effect of smoothing over a trajectory. The large corrections at
the end of each step have been smoothed. Note that the segmented
and non-segmented smoothed trajectories are essentially overlapping.
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Fig. 4: Effect of smoothing over multiple steps. The large corrections
at the end of each step have been smoothed. Note the difference in
scale between the xy-plane and the z-axis.

the furthest point from any ZUPT, and the covariance looks

symmetrical over the step.

On the other side, Fig. 6 shows the smoothing effect over

the position error covariance. In the non-smoothed ZUPT-

aided INS, the position error covariance increases over time

and decreases when there is a ZUPT. However, the ZUPT

does not completely decorrelate the position components (in

contrast with the velocity components). Hence, the position

error covariance increases over time. Besides, the position

error covariance evolution throughout the step is increasing

until the ZUPT is detected, where it suddenly decreases. For

the smoothed implementations, the information provided by

the ZUPT is available along a step. Thus, even though the

position error covariance increases along the whole trajectory,

it has no sharp corrections at the end of each step.

The proposed smoothing method is dependent on the length

of the ZUPT segments detected, as well as the velocity of

the pedestrian. Therefore, depending on the application, some

tuning of the varying-lag rule and ZUPT detection thresholds

could be necessary.
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Fig. 5: Typical effect of smoothing over the velocity error covariance
throughout two steps.
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Fig. 6: Typical effect of smoothing over the position error covariance
throughout two steps.

V. CONCLUSION

In this article we have suggested an smoothing algorithm

for ZUPT-aided INSs, which has been shown to eliminate the

discontinuities at the end of each step. The proposed method is

based on a 3-pass mixed open-closed-loop filter. Consequences

of smoothing have been illustrated, analyzed and quantified

over a test trajectory, over multiple steps and over the error

covariance values.
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