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Abstract—We present a conclusive comparison of two different
cooperative localization schemes, namely the successive refine-
ment and network multilateration approaches. Both strategies use
ranging information to localize nodes in the network, differing in
the form this ranging information takes. Successive refinement
has nodes estimate their positions by ranging to their neighbors,
who in turn estimate their positions in the same way. Network
multilateration ranges by finding the shortest multihop path to
the network anchors and using the length of these paths as
ranging information.

We test both these approaches in a variety of scenarios
involving mobility using a JiST/SWANS based simulator.

We show that network multilateration, even though it intro-
duces an additional error source, can achieve better results than
successive refinement in most scenarios involving mobility.

Index Terms—Indoor Localization, Cooperative Localization,
Localization Algorithm, Wireless Sensor Networks, Simulation

I. INTRODUCTION

While localization in outdoor environments is a solved task,
the problem of a reliable ad-hoc indoor positioning system still
poses great challenges.

We put our focus on radio based localization systems which
use range based lateration algorithms. Within this domain one
of the most important issue is to get an accurate value for the
distance between a network member with a known position
called anchor and a network member with unknown position
called node. The accuracy of the measured distance between
anchor and node has a high impact on the accuracy of the
position which is a result of multiple measured distances used
by an lateration algorithm. Besides the problem of the distance
measurement itself the problem of link quality occurs within
real world radio networks. To find the position of a node we
need to know the distance between the node and at least three
anchor nodes. To measure this distance the node needs a stable
radio link to a sufficient amount of anchors. In a real world
scenario we will see a lot of cases where this requirement can
not be fulfilled for all nodes in the network.

The solution to this problem is to use cooperative local-
ization, which means that the node which does not have
direct access to a sufficient amount of anchors can use other
neighbour nodes as anchors using their measured position.
This is achieved by recursion — the network multilateration
approach has nodes recursively discovering paths to anchors
using other nodes as intermediaries and then using the length

of these paths as ranges, whereas the successive refinement
approach has nodes with direct contact to anchors estimate
their positions and then acting as new anchors to other nodes,
in turn allowing them to estimate their position. The latter,
however, entails a strong possibility for errors in scenarios
involving mobility, as nodes that move out of the reach of
all anchors still use the recursively estimated — and thus
error-prone — positions of their neighbors, making their
own estimates even less accurate. This so-called “clustering”
error can grow very large very fast, rendering all position
estimates within the clusters useless. We show that network
multilateration is not affected by this problem.

II. RELATED WORK

The problem of cooperative localization is well known in
the domain of wireless sensor networks and a lot of different
algorithms and approaches have been discussed in the last
decade. A very good overview of the work of the last years
is presented by Patwari et al. [1]. The authors distinguish
between centralized algorithms and distributed algorithms to
solve the problem of localization within a sensor network. As
we assume in our case that we to not have a central entity
which shall solve the task and want to reduce the volume
of communication within the network we will focus on the
distributed algorithms.

The distributed algorithms are also split into two different
approaches which Patwari et al. call network multilateration
and successive refinement [1].

The network multilateration approach was introduced by
Niculescu [2] and also independently by Savvides et al. [3]. In
both works the shortest paths between three or more anchor
nodes and a node is searched in a network and afterwards
used as distance value for the multilateration algorithm. We
use the same way of measuring distances in our simulation,
but apply several other localization algorithms in addition to
multilateration.

With the successive refinement algorithm a more intuitive
way of collaborative localization was presented independently
by several authors [4]-[6]. The basic idea in this approach
is to give each node a position estimate in a certain way,
e.g. by using network multilateration and to improve these
results afterwards by recursively gathering better position
estimates. Therefore nodes which have a 1-hop connection to
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anchors localize themselves and distribute to the network when
their position estimate has converged to a certain accuracy.
Afterwards these nodes can also be used as anchors and so
forth. Theoretically this approach seems to result in better
position estimates network wide, a claim which we wanted
to examine in our work.

In this paper we want to compare the performance of
different cooperative localization approaches. Savvides et al.
[7] provide an overview of the parameters we need to take
into account when analyzing the accuracy of cooperative
localization, such as network density, path length and lo-
calization error itself. Whitehouse and Culler [8] compared
different cooperative localization systems by using real world
localization data to check whether the theoretically developed
metrics and bounds of former work can be used in real world
scenarios.

In our work we compare the network multilateration and
the successive refinement approaches using the JiIST/SWANS
simulation environment.

III. SIMULATION
A. JiST/SWANS

We implemented our approach using the JiST/SWANS!
simulation environment, which is described in detail by Barr
[9], [10]. We used a modified set of the components provided
by the SWANS framework, including radios that simulate
interference, packet collisions and packet loss.

B. Algorithms

Using our simulation environment, we implemented both
the network multilateration and the successive refinement ap-
proaches in order to compare them using the same parameters.

In both approaches, anchors with a priori location informa-
tion broadcast their position to all other nodes. The other nodes
gather these broadcasts in order to fill their routing tables. In
the network multilateration approach, the routing table tracks
the current estimated distances to all anchors as well as the
position and anchor distances of all neighbors (anchors and
non-anchors). Entries are updated whenever a broadcast is
received. The routing table keeps track of the shortest paths
to all anchors (see Algorithm 1).

The successive refinement approach similarly uses routing
tables — it stores the positions of nodes it can hear together
with their hopcount (see Algorithm 2).

In order to locate themselves, nodes first retrieve the best
entries from their routing table. In the network multilateration
approach, this means selecting the shortest path to all reach-
able anchors as previously stored in the routing table, whereas
in the successive refinement approach it means selecting those
neighbors with the lowest hopcounts and using their estimated
positions. In any case, the node now has the positions of at
least three nodes as well as their distances and hands these
over to the lateration algorithm of choice. It is important to
note here that the choice of method for lateration has nothing
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Algorithm 1 Network multilateration — routing table update

1: if neighbor.isAnchor() then

2: range < estimated distance
3: routingT able.update Anchor Entry(neighbor)
4: end if
5: if neighbor already in routing table then
6: neighbor Entry.set Location(loc)
7: neighbor Entry.set HopCount(hopCount)
8: neighbor Entry
.update Anchor Distances(anchor Distances)
9: else

10 routingT able.newN eighbor Entry(
loc, hopCount, anchor Distances)
11: end if

Algorithm 2 Successive refinement — routing table update

1: if neighbor already in routing table then

2 neighbor Entry.set Location(loc)

3 neighbor Entry.set HopCount(hopCount)

4: else

5 routingT able.new N eighbor Entry(loc, hopCount)
6: end if

to do with the choice between successive refinement and
network multilateration — this choice is confined solely to the
question of how the localization information is obtained. The
lateration algorithm can be chosen independently. However, as
we will show later, the quality of the results depends on the
combination of localization method and lateration algorithm.

As has been shown, the two approaches differ solely in the
parameters they hand over to the lateration algorithm — one
uses the recursively determined locations of its neighbors, the
other approximated distances to the anchors. All other aspects
are identical, allowing us to conclusively compare the different
localization strategies.

C. Parameters

We tested our implementation using a 150 x 150m? field
with three anchors arranged in a triangle in the upper left
corner. The mobile nodes were initially placed in the center
of the anchor triangle and then started moving according
to a “random waypoint mobility model, meaning that each
individual node chooses a random point on the field, moves to-
wards it for a given time with a random speed between 0.1 and
2m/s, pauses for a given time and repeats the process. This
will distribute the mobile nodes evenly across the field during
the course of the simulation run. Variable parameters were
the number of mobile nodes ({25,100,200,300}), the number
of anchors ({3.4,5}, with additional anchors after the first
three being placed randomly in the field), update frequency
(location is updated every {1,2,3,4} seconds) and the lateration
algorithm used (Trilateration, LLS, NLLS, AML).

Because our approach is a cooperative one, we can improve
our accuracy by increasing the number of mobile nodes. Our
results show that the lower bound on mobile nodes for a
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Fig. 1. Comparison of the strategies in low and high node density scenarios.
Left: 25 mobile nodes, right: 100 mobile nodes
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Fig. 2. Comparison of different combinations of localization strategy and

lateration algorithm. Left: Successive refinement, right: Network multilatera-
tion

150 x 150m? field lies around 50 nodes. As can be seen in
Fig. 1, at a density level of 25 nodes, network multilateration
is much worse than successive refinement, with successive
refinement achieving only marginally worse results than at
higher densities. Any number of nodes above 50 achieves
acceptable results for both strategies, with accuracy still im-
proving noticeably when going from 50 up to 300 nodes.
However, above a density of 50 nodes, network multilateration
quickly becomes better than successive refinement, rapidly
overtaking the other approach at a density of around 100
nodes.

In most traditional localization approaches, accuracy can
easily be boosted by increasing the number of anchors in the
field. In comparison, our experiments show that our approach
is not significantly improved by increasing this parameter.
This is due to the cooperative nature of our algorithm — no
node needs to be directly within range of three anchors, it
just needs to have access to multihop paths to three anchors.
Another obvious method to increase accuracy is to increase the
frequency of location updates. In traditional approaches, where
nodes rely on inaccurate position estimates of their neighbours,
frequent updates are essential to keep these estimates realistic.
In our approach, where anchor positions are fixed and only
the length of the multihop paths between nodes and anchors
varies, we can afford data being a little staler.

Finally, position accuracy is obviously strongly influenced
by the lateration algorithm used to process the results obtained
by localization. For our simulation, we tested the two localiza-
tion strategies in conjunction with four well-known lateration
algorithms: Classic trilateration, Linear Least Squares (LLS),
Non-Linear Least Squares (NLLS) and Adaptive Multilatera-
tion (AML). All except the first of these are multilateration

algorithms, meaning that they can utilize additional anchors
other than the three needed for trilateration in order to further
refine their position estimate. The goal of this paper is not to
compare these lateration algorithms, but to analyze the results
obtained from feeding data generated by the two different
cooperative localization approaches to different lateration al-
gorithms — in short, to evaluate the different combinations of
localization strategy and lateration algorithm.

Figure 2 shows a comparison of different combinations of
localization strategy and lateration algorithm. It is immediately
obvious that network multilateration on the whole achieves
more consistent results, i.e. results that are less dependant on
choice of lateration algorithm. Classic trilateration is not at
all affected by choice of localization strategy, implying that
the most significant differences lie in the quality of the data
used for refining the position estimate in the multilateration
algorithms. NLLS is also not significantly influenced by the
localization strategy, achieving consistently good results in
either scenario. LLS, however, benefits greatly from network
multilateration as opposed to successive refinement. AML is
also improved by network multilateration, but not as drastically
as LLS.

D. Interpretation

In order to analyze the difference in position estimation
quality in the two different approaches, we must analyze the
error sources inherent in these approaches.

The most significant error in network multilateration is the
ranging error. This is due to the fact that this approach uses not
only the range to its neighbors, but whole multihop paths to the
anchors, each consisting of several range measurements, each
in turn error-prone. Simply speaking, the expected ranging
error increases with the distance in hops from a given anchor.
Successive refinement, on the other hand, has its main error
source in the fact that it bases its estimates on positions that
are themselves estimates. This means that the further away a
node is from an anchor, the more fuzzy the estimate becomes.
The basic question is thus this: Which error source — ranging
or position — has a stronger influence on the result of a given
lateration algorithm?

Looking at our results, the answer is obvious: The ranging
error has significantly lower influence on the overall error.
The explanation for this observation can be found in the phe-
nomenon of clustering that arises in scenarios with mobility:
When using recursively estimated positions instead of paths
to anchors, we effectively laterate using positions that are
themselves estimates, instead of using positions we know to
be accurate, only with estimated ranges. Considering a group
of nodes with no nearby anchors, it is easy to construct a
scenario where these nodes continuously estimate their own
locations using the estimates of their neighbors — none of
which can reach an anchor. It is obvious that in such a
scenario, the position error is unbounded and will quickly
render all estimation useless. Using paths to anchors with
known, fixed positions will place an upper bound on the error
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Fig. 3. Spatial distribution of the average position error with
a dense anchor distribution of nine anchors.

propagated through the recursion steps, effectively avoiding
cluster formation.

Another angle that needs to be evaluated is that of spatial
distribution. Will et al. have presented a lateration algorithm
simulation and visualization engine called LS? [11] which
can visually evaluate and compare distance based lateration
algorithms by displaying the spatial position error distribution.
Using the images generated by LS?, we can not only analyze
the overall error of the two approaches, but also their spatial
distribution.

In Fig. 3, we simulated the spatial distribution of the
position error for two different algorithms. The images show
the simulation error and the color of each position represents
the average position error for 1000 simulation runs. The green
area indicates a position error that is lower than the expected
distance measurement error; the darker the color, the lower
the error. The gray area indicates a position error that is
higher than the expected distance measurement error; the
darker the color, the higher the error. In the blue area, the
error is very high and is cut to keep a good image contrast.
For this example we simulated two well known algorithms:
multilateration with a nonlinear least squares (NLLS) solver
[12] and Min-Max [13], [14]. The average position error for
NLLS is ways lower than the position error for Min-Max,
but inside the convex hull of the anchors Min-Max has a
much better performance than NLLS. If we were to use Min-
Max for cooperative localization with successive refinement
the chance is very high for each hop that we hit a non-green
area, so the resulting position error would be much higher
than the accumulated distance measurement error. Network
multilateration faces this problem only once, because the
lateration algorithm is calculated only once. NLLS shows a
very homogeneous spatial distribution of the position error:
nearly the whole simulation area performs around the expected
value of the distance error. So NLLS should be usable for both
cooperative strategies. It can be seen in Fig. 2 that this assumed
behavior could be reproduced in our simulation results.

IV. CONCLUSION

We presented an evaluation of the two main cooperative
localization approaches and analyzed their sources of position
error. We showed in our evaluation that network multilateration
has some advantages over successive refinement that have

not been researched very well. Especially the impact of the
spatial distribution on the position error needs further research.
We showed that formation of clusters, which can be a major
source of error in the successive refinement approach, can
be effectively minimized when using network multilateration.
Future work should also address the possibility to switch the
lateration algorithm regarding the spatial error distribution. It
is also conceivable to develop a metric based on the spatial
error distribution for each hop in the network, which gives a
clue as to whether to use network multilateration or successive
refinement.
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