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Abstract—We present in this paper a fast and accurate 2D laser
based SLAM for indoor environments. The approach does not
presuppose the availability of odometry data and hence is suitable
for a large number of robots like UGVs, UAVs or humanoid
robots. We use a Rao-Blackwellized particle filter to track the
robot position with the number of particle used kept very low.
This number increases in case of ambiguity like when traversing
corridors. 2D robot pose can be accurately retrieved using a fast
scan matching method. We also present an implementation of
our algorithm in case of cooperative exploration using UAV and
ground robots. Altitude invariant features like walls are extracted
and given more weight during the scan matching process. Using
this approach we show how fused maps even at different altitudes
remain reliable enough to be used by either ground or aerial
robots.

I. INTRODUCTION

Autonomous exploration lies at the heart of truly au-
tonomous systems. Systems which show such autonomy can
merge easily with human’s daily environment, safely navigat-
ing and executing higher level orders. Exploration of sparse
environments with a single robot can be a time prohibitive task.
Using a team of robots allows the use of efficient coordination
strategies and achieve the exploration task in substantially
shorter time and in more robust way [1][2][3]. Of course,
this comes at the expense of a more complex system to build
and coordinate. In such cooperative framework, a team can
be made of multiple heterogeneous robots, asking for the
underlying Simultaneous Localization and mapping (SLAM)
approach to handle most of types of robots like humanoids,
wheeled robots or UAVs with each of these types having
inherent constraints and characteristics. For example, in most
of cases, basing on a 2D range sensor, SLAM with wheeled
robot can be formulated as a 2D SLAM problem on a plane
ground [4][5], while UAVs on the other hand can tilt or roll
which asks for building a 6D robust SLAM approach [6][7][8].
Humanoids can tilt their head too looking for obstacles on the
ground to avoid and walk away from, asking for a 6D robust
handling [9] and a correct handling of such floor obstacles
during the mapping process.

In this paper, we propose a fast SLAM implementation
which takes into account all three types of robots specificities
and can operate in relatively dense indoor environments. We
then extend our approach to the case of mapping with a team

of heterogeneous robots.

II. PROBLEM STATEMENT

Simultaneous localization and mapping has been one of the
most active fields of mobile robotics research during the past
decade. The proposed approaches in the literature range from
filtering based [4][10][11] to smoothing based approaches
[12][13][14] and can build on vision [15] or laser [16]. Most
of these algorithms yield very good results in practice, and a
combination of two or more of these methods can achieve very
good reliability for indoor SLAM problems. Our primary focus
in the present work is to build a SLAM algorithm that handles
different types of robots, mainly UAVs, humanoid robots and
wheeled robots and can operate in dense environments.

Fig. 1. Mapping with a Humanoid robot

Fig. 2. Mapping with a Humanoid robot
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Let’s consider the example Fig. 1. A standing Humanoid
robot tilts its head, observing the wall, the floor and then
floor obstacles. Fig. 2 shows at low resolution the result of
mapping in such scenario. A 2D SLAM approach yields the
result shown on the left on Fig. 2. As can be seen, the floor
and the obstacles on the ground create corruption in the map.
The robot seems to be moving forward while it’s standing
static and tilting its head only. The right part of Fig. 2 shows
a proper handling where the map is correct and floor obstacles
are detected as different components of the map.

This shows the necessity of a SLAM approach general
enough to handle different kind of robots. Navigation with
wheeled robot (with no laser tilt) can be expressed as a 2D
SLAM problem. The laser sensor on such robots being in
general at relatively low level, floor obstacles can be easily
avoided. UAV’s navigation on the other hand can hardly be
approximated as a 2D slam problem. UAV can show non
negligible roll and pitch when moving and their altitude is an
additional factor to estimate. This asks for a proper knowledge
of the attitude and altitude (6D robustness) of the robot to
create reliable 2D maps. When mapping with a 2D laser
sensor, a classic approach is to fuse the result of a 2D SLAM
with the data coming from an IMU or a MARG (Magnetic,
Angular rate and Gravity) sensor [6][7][17]. On the top of
that, an assumption to fully constrain our model is the 2.5D
assumption where all object in the world are supposed to fall
perpendicularly on the floor. If this is the case for walls,
this is certainly not the case for most of objects in our
environments like bookshelves or chairs. These objects when
mapped create corruption in the map. Given that most of
corrupting objects are at relatively low altitude level, during
the flight, the UAV sees generally good proportions of the
walls and does not bother about the floor plane or objects lying
on the ground. Finally, UAVs typically don’t possess odometry
data. Displacements have to be extracted by other methods
such as scan-matching or visual odometry. Things gets more
complex when mapping with humanoids. Humanoids typically
don’t possess laser sensors in their legs, and can fall easily in
contact with ground obstacles. This asks for a proper detection
and avoidance of obstacles on the floor. Moreover, when they
tilt their head in densely populated environments, humanoid
mapping goes through 4 different stages :

• first stage where the tilt is nearly 0 and in which case the
SLAM problem is a straightforward 2D problem

• second stage where the tilt angle is small and big propor-
tion of walls can be seen which yield robust result when
mapping with a 2D SLAM and associated IMU

• third stage where the tilt angle is big but the floor is still
not seen and in which mapping becomes harder given that
laser beam reflect on floor objects that do not respect the
2.5 world assumption

• finally a fourth stage where the laser hits the floor and
floor objects as well creating an ambiguous environment
like Fig. 2. In such case, mapping augments the proba-
bility of creating highly corrupted maps and later ending

up in a localization failure.
Based on the previous remarks, our approach bases on the

following ideas to solve the presented issues. First, the 2D
front-end approach used has to be as fast as possible. As said
before, when the robot faces the ground, scan-matching or
mapping is likely to produce erroneous results especially in
dense environments. The 2D front-end SLAM has to handle
this issue by recovering the robot position as soon as the floor
is not detected anymore. This is to cope with the case of
Humanoid robots. Then, the general approach has to be 6D
robust to account for possible tilts and rolls such as when using
an UAV, Humanoid or a wheeled robot on a slope. Finally, our
approach has to find low semantics in the map such as floor,
walls and obstacles on the floor and handle each separately
when registering scans in the overall map.

III. LASER BASED SLAM FOR HETEROGENEOUS ROBOTS

A. 2D front-end slam

1) General approach: We take a grid based approach where
each grid models an occupancy state (unknown, obstacle, free).
In practice, each grid stores a probability of occupancy. The
grid size was taken as 5x5 cm which we believe is a good
trade-off between speed and accuracy.

In all the following the 3D navigation coordinate system is
taken as a right-handed system with the z axis pointing up.
We call navigation frame the robot centered frame described
by the three parameters (x, y, θ).

We ”locally” rely on a Rao-Blackwellized particle filter
where each particle represents < xit,m

i
t−1, w > and sam-

ples the joint probability on position and maps. The sensor
model P (zt | xit,mi

t−1) is taken gaussian with low vari-
ance and we used the optimal proposal distribution P (xt |
mi

t−1, zl,t, ut, x
i
t−1) for Rao-Blackwellized particle filter up-

date. Since we do not rely on odometry to perform the
prediction step, a scan-matching step is performed to calculate
robot displacement between laser updates.

For most of non dense and non ambiguous environments,
we noticed however that one particle would suffice to yield
accurate results and using multiple particles would be a waste
of processing time compared to the gain in accuracy. We hence
restrict the use of multiple particles only to two scenarios :

• when the laser faces the ground (such as in the case of
humanoid robots), we stop scan-matching. Within such
period of time however, the robot can move beyond the
reach of a the window size used for position update. To
account for this phenomenon one could enlarge the search
area. A faster and more elegant approach is to take into
consideration the previous state and commands of the
robot. If we know the previous robot state (position and
speed) jointly with the commands sent by the controller
to the robot then we can formulate a guess on the actual
robot position even when the robot’s head faces the floor.
This is the role of an Extended Kalman Filter (EKF)
based state updater presented in a further section in
this paper. Having such prediction, we generate particles
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Fig. 3. Storing likelihoods of a hit in lookup tables

around the predicted position and update when the floor
is not detected anymore and scan-matching can restart
again.

• since we don’t use any visual based approaches in our
current system implementation, loop closure for single
robots are recovered by scan-matching. To accelerate
the search for loop closure candidates we restrict the
search for loop closure candidates to a limited search area
(typically 45 degrees in rotation and within 2m radius).
The typical limitation to such approach is in the case
of mapping in a featureless corridor much longer than
the laser range maximum detection range. In such a case
we can only base on controller commands as a source
of knowledge on translational displacement. To be sure
to detect a loop in such conditions we generate more
particles when the displacement is likely to exceed the
maximum detection range of our loop closure algorithm.

when ambiguity vanishes then we resample and keep only
the best particle to continue navigation with.

B. Lookup table construction

Let’s consider the map m computed during previous steps.
Each cell stores the likelihood phit ∼ exp(− d

σ ) where d is
taken as the distance to the closest cell hit by a laser beam so
far. Since these values are likely to be needed a high number
of times, these have to be precomputed and stored. Doing
so is one of the keys to great speed enhancement and to
online feasibility. Of course this yields approximations in the
computed probabilities (since we don’t know where exactly
inside a cell is the laser going to hit but are formulating an
estimate). Fig.3 shows the difference that can occur in the
computed probabilities.

Free cells in the vicinity of occupied cell will have non null
likelihood of a hit, this is to model the fact that a previous robot
guess may have been wrong and that the laser sensor data can
never be perfect. Each freshly hit cell updates its occupancy
state as well as the accumulated hit point. This is done to have
maximum precision in our scoring process and to account for
the fact that some of the cells may be only hit in the corner.
This phenomenon has to be reflected when calculating the
lookup table values. Hit cells then update other free cells in
its vicinity according to an exponential model. Inconsistency
can arise from the fact that only a guess can be expressed

by calculating the likelihood from the distance to the center
of the neighboring cell while the true laser hit may occur far
from the center of the cell. Such a case is illustrated in Fig.3.
In practice however, such a model even being approximate
is consistent enough to yield a correct convergence of the
optimization process. In further steps, if a previously updated
cell comes to be set as free again (being traversed too many
times by laser beams) the lookup table has to be revised again
to account for such a change.

C. Scan-Matching

Scan-matching has been extensively used for this purpose
and can be implemented to overcome scenarios where no
odometry data is available (navigating with UAV in indoor
environments for instance). It aims at aligning currently avail-
able laser scans with previous scans or with a given map. To do
so many approaches have been taken. Some aim at finding the
best point to point correspondences like ICP based methods,
other aim at feature to feature correspondences. A third
paradigm aims at computing the rigid body transform which
yields a maximum of likelihood given the map computed so far
like [18]. We take a similar approach in the scope of this work.
For our case, scan-matching aims at finding the best rigid body
transform which aligns actual laser scan with the previously
registered map. Accounting for all laser hit independently, our
goal can hence be expressed as:

T(tx, ty, φ)
∗
= argmaxPhit(T⊗E | m) (1)

Where E is the laser measurement and m our map. The
previous equation describes a planar problem since the trans-
formation matrix T accounts only for planar displacements.
As it has been shown in previous section such a model fails
to capture tilting and rolling noise or voluntary head attitude
change and leads to potential failure in most of the cases. For
such a reason it has to be changed to account for possible roll
and pitch.

D. 6D Robustness

6D robustness can be achieved if we know the roll and pitch
of the robot, or in the case of humanoid robots, the roll and
pitch of the robot’s head and using the 2.5D assumption about
the world. The information on tilting and rolling movement is
given by a separate MARG sensor. The sensor also provides
heading information. Such information if not corrupted can be
used as a start to the scan-matching process. For UAVs, the
altitude z can change. By changing, the map can also change.
However, for most of the case and since UAVs stand relatively
far from the floor, a big proportion of walls can still be seen
yielding changes at very local points on the map in most of the
environment. Moreover, if we account for rolling and tilting as
parameters to optimize in our state vector, the scan-matching
step takes much more time to finish which is not desirable.
We derived our sensor fusion algorithm for MARG attitude
estimate very carefully, and given our map resolution, the error
on the provided roll and pitch estimate are negligible. Hence,
we take the roll and pitch estimates as granted and do not seek
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further optimization on these parameters. In the sensor frame
the beam end point has coordinates :

eisensor = (xisensor, y
i
sensor, z

i
sensor, θ

i
sensor) (2)

The problem can be restated as :

T(tx, ty, φ)
∗
=

argmaxPhit(Ttx,ty,φ ⊗Tglobal
navigation

⊗O(TβγEsensor) | m)

where the matrix O designates an orthography transform to
the initial robot plane, β γ account for the pitch and roll and E
is our laser sensor measurement. As we said before, since we
use an orthography transform of 2D laser slice, we are only
writing an ”approximate description” of the world supposing
that all objects fall orthogonally on the ground.

E. Extracting semantics

The scan-matcher takes into consideration every laser end-
point as a separate piece of the total probability estimate.
If we could separate walls from other objects giving more
weight to walls, the total scan-matching result would be
drastically more robust to roll and pitch changes. Detecting
the walls from one laser scan is not easy. However detecting
walls from multiple and successive laser scans is relatively
straightforward following a simple definition: the walls are the
invariants under the 2.5D assumption. Thus, when the robot
tilts, the projection on the plane ground that hits the expected
cells under the 2.5D corresponds in our case to ”walls”. An
additional score is added to such grid cells giving them more
weight during the scan-matching step. The second element
to estimate in our semantics is the floor. Detecting the floor
should stop registration and position update and generate more
particles to keep consistency in the map. The floor position
is calculated very easily knowing the current altitude z by
transforming from the sensor frame to the global frame and
extracting point corresponding to altitude 0 in the global
coordinate frame. Since we know the expected position of
the floor, we know which laser points correspond to obstacles
on the floor. The points are assembled and marked as floor
obstacles. Cells corresponding to floor obstacles have a null
score so not to corrupt the scan-matching process yielding a
substantially more robust approach. These are however marked
as occupied space and taken into consideration by our planner
when generating safe trajectories for robots.

F. Robot State Update

The full state X = [x y z ẋ ẏ ż ψ θ φ ψ̇ θ̇ φ̇]T is updated with
varying delay depending on communication delays, on the
current scenario (interruption of scan-matching when seeing
the floor), ambiguity in the environment. For more guarantee
on the reactivity and the predictability of the system, and also
to keep track of robot positions during SLAM interruptions,
we maintain a state estimate at constant rate using a separate
Extended Kalman Filter. In practice, we do not include the

roll and pitch data in the following since these are directly
given by the MARG sensor. Moreover, at the current stage
of our system, z is not estimated. UAVs are dealt with just
like wheeled robots supposing that UAVs will never see the
floor. For Humanoids z is estimated based on the current laser
tilt and laser position within the robot body and is used to
estimate the floor and floor obstacles position.

The filter predicts its state given a simple motion model then
is updated with MARG sensor and scan-matching results. For
instance the prediction for x y ẋ ẏ is given by :

xk+1 = xk + δt(cos(φ)vx − sin(φ)vy) + wx

yk+1 = yk + δt(sin(φ)vx + cos(φ)vy) + wy

ẋk+1 = ẋk + wẋ

ẏk+1 = ẏk + wẏ

(3)

with wX being the white noise associated with param-
eter X . Measurement updates come essentially from the
scan-matching result. The scanmatcher essentially gives the
displacement between two different timestamps. From such
information we can also extract observations of velocity. The
grid resolution imposes however a bound on the precision
we can extract following such approach. For 5cm grid cell
the robot can appear not moving between two laser scans.
We hence maintain a history of laser scan results an update
velocities based on the difference of sufficiently time spaced
samples. Such approach, if it gives more accurate estimates
during constant speed movements, does not handle very well
fast velocity changes due to the smoothing we operate. In
practice, giving an appropriate averaging time (around 1s) can
yield results good enough to perform tasks relying on estimates
of the robot velocities.

Since the scan-matching result comes with high delays (20
to 10 Hz as update rate) than the higher frequency MARG
data (100Hz), such out of sequence measurement has to be
correctly dealt with. In our case, the state dimension is low
and the jacobians quite simple to derive. We hence first keep
a history of previous state updates. When an out of sequence
measurement reaches we drop all measurements made after
the measurement data. As this stage the problem becomes a
pure 1-step lag problem and solved consequently. Then, we
re-update the state the appropriate number of times until the
most recent timestamp. Doing so we are sure to find an optimal
estimate.

IV. EXPERIMENTATION

We first show an application of our approach in the case of a
humanoid Robot. Fig. 4 shows our experimental environment.
A Nao robot [19] has to explore autonomously an indoor
environment with randomly placed ground obstacles until
it finds a given target landmark as shown in Fig. 5. The
Robot tilts its head up and down to detect obstacles on the
floor. Doing so it also detects the floor itself. Fig. 6 shows
an intermediate result of the SLAM process. As shown in
the figure, obstacles on the ground are correctly detected as
separate components of the map and handled correctly by the
planner to yield a safe trajectory to the next best target.
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Fig. 6. Example of our SLAM approach for a Humanoid Robot in dense environment

Fig. 4. Test environment

Fig. 5. Found landmark

The front-end SLAM algorithm has an update rate of 20Hz.
As it has been said before, the SLAM stops when the robot
laser faces the ground. The red line in Fig. 6 is hitting the
floor, and mapping in such case would yield big inaccuracies.
In such case the EKF state updater provides with the necessary
prediction information to generate more particles. When the
robot sees the walls again the SLAM can be updated once
again.

Fig. 7. Relative pose determination

V. SLAM WITH MULTIPLE ROBOTS

Growing the number of robots involved in the explo-
ration task is a solution to explore larger surfaces with a
maximum time efficiency [20][21][2][22][3][1][23][24]. Early
approaches dealt with the multi-robot problem as a straight-
forward extension to the single robot case, principally making
the assumption of a common frame of reference and unlimited
communication range. A simple solution to the second as-
sumption is to make every robot of the cooperating team highly
independent, running all components of the SLAM individu-
ally and communicating whenever communication constraints
allow it. The first assumption’s validity highly depends on the
kind of cooperative system being in use. If the robots are
known to start at a known point with known configurations
then one can assume that all the robots share a common
frame of reference. In such case doing SLAM in a cooperative
way can be pretty straightforwardly dealt with. However in
practice, this is almost never the case. Robots can start at two
different points without any knowledge of their relative posi-
tions. In such a case, the robots should be able to recover the
transform between their respective frame of reference either
in a synchronous way such as direct observation of a robot
by another robot, or asynchronously by recognizing a part of
map previously seen by a teammate robot. Robot to robot
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direct observation is not an easy task unless one uses special
markers easy to detect. For the most general case where we use
heterogeneous robots without any prior knowledge of the robot
involved in the cooperative task, synchronous observation can
hardly occur. Moreover in very sparse environments direct
observation of a robot by a teammate robot becomes a rare
event, making any cooperation between robots hard. for such
reasons, in the most general case, in sparse environments
and without any markers placed on the robots, every single
robot should be able to recover the relative position of a pair
team robot by inference from its own knowledge and other
teammate’s knowledge. As an example of such strategy robots
can record several different landmarks extracted randomly and
sparsely from the environment and broadcast such knowledge
through the network. Each teammate robot then checks if one
of these landmarks appears in the current map being explored.
If such is the case, the teammate robot’s position can be
recovered easily, and by transitivity, every cooperating robot’s
position can also be received. We take such approach in the
scope of the present work as shown in Fig 7.

A. Relative Pose Determination

We place ourselves in the general case where no initial
relative poses are given. In such case, recovering such in-
formation is an essential step during the multi-robots SLAM
process and a prerequisite to any coordination strategy. We
use 3D landmark recognition to recover a good estimate of
the transformation existing between the frames of reference if
two robots based on the homography matrix returned by the
vision algorithm. In practice, any feature+associated classifier
vision algorithm can be suitable for this task. 3D detection
capabilities under severe affine transforms is necessary to
accommodate for the case where the robots look at a landmark
from very different angle of views or altitudes. Without such
ability, the robots may miss a common landmark even when its
position is close enough which increases the need to store even
more landmarks in our database to be sure an asynchronous
observation can be made as soon as possible.

Fig. 8. 3D detection algorithm results

Fig.8 shows an example of our 3D landmark detection
system based on the work presented in in [25]. The result
of the algorithm is a homography matrix from which we can
extract planar parameters (xl yl θl). The transforms between
two robots can then be easily retrieved following the equation
:

T robot1
robot2 = T robot1

L TL
robot2 (4)

The transform T robot1
robot2 given by the vision algorithm con-

stitutes in most of the cases a good estimate of the relative
position. As our most important goal is consistency with the
environment map we add a local scan-matching step that
refines the translational and rotational parameters. The matrix
T robot1
robot2 as well as T robot2

robot1 are the result to be stored and used
by cooperating robots so as to recover at every time step other
robots position.

B. Map merging

In the previous section we computed an estimate of the
current transform between two robots. One important point re-
maining is how to combine multiple measurements/constraints
made between the two same robots. Each of these constraints
represent a measurement associated with noise. Given this
noise/covariance matrices associated with the set of different
measurements we can derive an optimized solution mapping
robot1’s position and associated map to robot2’s frame of
reference. We use the same framework presented by [23]
that uses anchor nodes and bases on factor graph solving by
isam library[12]. In this context every robot updates its own
graph separately. If more than one inter-robot constraint is
added to problem becomes an optimization problem yielding
an optimized transformation between the two robots frames
of reference. If only one constraint measurement is made, the
transformation is generally very noisy. The local merged map
is generally consistent, but further points of the map may
appear off of the track causing mapping problems. From a
practical point of view, when a teammate map is added to
a robot’s map, this actually corresponds to one observation
added to the map. Even in case of noisy data this is often not
enough to erase good parts of the initial map that have very
high mapping score such as walls. The effect of merging is
such that only previously unseen spots are going to appear
affected, previously mapped cell retain their value which
originates from a progressive and longer mapping.

Inter-robot measurements in a fully autonomous system are
rare events in the case of asynchronous maps especially when
the environment to explore is sparse. On the other hand, the
consequences of a bad transform estimate originating from too
few available constraints can be non negligible in merged maps
far from the current merging point and previously unseen by
the current robot. In such case, the robot essentially builds
on the teammate robot’s map to navigate. If the deformation
between the map merged is big, since the scan-matching is
a progressive process the previously merged map is going
to be overwritten with current better estimates in the best



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

case. In some cases however in the current robot’s location
lacks enough laser features, the robot may end up considering
the merged map as a good map and updates its position
accordingly, constituting like a jump in the deformed merged
map and mapping all further observations accordingly, creating
two locally consistent maps but a globally deformed total
map. A solution to such phenomenon is to find more than
one constraint between the robots graph at two different and
distant locations before really merging the maps. Doing so,
we can be sure that the merged map and the contribution
of the cooperative robot is going to be consistent with the
original map created by the current robot. However, this may
delay any cooperative work to a later time step when a second
constraint can be recovered. To save time, we look ”manually”
for constraints in the environment via scan-matching. This step
is often very fast since the current landmark observation gives
an estimate of the transformation. We hence look in both graph
convergence points of the trajectory close enough from each
other for scan-matching and far enough from the current robot
position to yield a second good constraint to do optimization
with.

Finally, when merging too maps acquired by two heteroge-
neous robots such as two maps acquired at different altitudes,
good features from the original robot’s map cannot be erased
since they were acquired through a longer mapping process
and have high scores, while the new merged map yields
typically one observation which is not enough to decrease a
good score to yield a change in the map structure. Thus, only
points that are originally unknown grid cells will be updated.
All the others in most the cases remain unchanged.

VI. EXPERIMENTATION IN CASE OF MULTIPLE ROBOTS

Fig. 9. Map by robot 1

Fig. 10. Map by robot 2

We propose here to check the validity of our multi-robots
mapping system. Two robots 1 and 2 explore asynchronously
the environment and stop when they find a landmark. Fig. 9
and 10 represent the maps acquired by robot1 and robot2. As
it can be seen, the frames of reference are taken randomly,
and no information about the relative pose estimates is given,
which is the general case we tried to solve. The map merging
module updates two different pose graphs until the two robots
make a landmark observation. Robot 1 is a Humanoid robot
while robot2’s map has been acquired by holding a computer
connected to laser sensor and a camera (which simulates
a UAV)and walking through the environment. A commonly
retrieved landmark, placed where the robot1 stands in Fig. 9
will allow us to verify our map merging system.

Adding the landmark measurement constraint allows to
calculate a first estimate of the transform between the two
robots. Fig. 11 shows the recovered trajectories and Fig. 12
shows the merged map given to robot 1. The map contains
mapping inconsistencies since the corridors in robot 1’s map
and robot 2’s map don’t overlap perfectly. As it has been said
before, the merged map gives only one observation update and
on the overall does not affect the robot 1’s map that has been
formed through a longer mapping process. This fused map
even if it contains inconsistencies can still be of great use for
navigation.

Fig. 12 shows an example of inconsistency between the
original map and the merged map. The ray represented in
red is given by the map merging module to update the new
merged map. As it can be seen, the ray does not perfectly
overlap with robot 1’s map. Once again, this is due to the
few number of constraints we have between our graphs. To
add more consistency to the map merging step, we look
retrospectively for a new constraint which is shown in Fig. 13.
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Fig. 11. Recovered trajectory of robot 1 and 2

The laser scans originated from the first fused map show the
nature of inconsistencies existing in the overall map. These
can be further corrected adding a scan-matching constraint
between the graphs. These constraints are associated with
covariance matrices that has to account precisely for the
nature of deformation existing. Once the second constraint is
successfully detected and added between the graphs, the map
merging module runs a batch optimization to yield a better
estimate of the transform between the two robots. The result is
shown in Fig. 14 as the new trajectory have a slightly different
deformation in rotational and Y translational axes. As it can
be noticed, the laser ray from robot 2’s map overlaps in a
more consistent way with robot 1 map. The process provides
a more accurate global map.

VII. CONCLUSION AND FUTURE WORK

This work presented a SLAM approach suitable for many
types of robots like UAVs, wheeled and humanoids as well
as a Multi-robot map merging method. On the single robot
exploration part, 6D robust simultaneous localization was
performed by merging data from MARG sensor and 2D
fast front-end SLAM taking into account low semantics in
the map such as walls, floors and obstacles lying on the
floor to yield an even more consistent map estimate. On the
multiple robot part, we made use of a 3D landmark detection
system to check for landmarks seen in common and recover
relative poses between robots. Map merging can take place by
maintaining independent trajectory graphs for each robot and

Fig. 12. Misalignment of laser rays with the fused map

adding constraints corresponding to inter-robot observations.
These measurement consist in landmark observation as well as
additional constraints added by scan-matching to increase the
consistency of the globally merged maps. Results were given
in case of mapping with two heterogeneous robots.

In our current map merging implementation, the main
purpose was to refine the relative pose estimate by manu-
ally looking for additional constraints between team robots
graphs. By using one global transform we do not perfectly
recover from twisted transformation estimates that can exist
between locally deformed area. As a future work, it would be
interesting to take an intermediate approach between [26] and
[23], calculating transforms for different locally merged maps
and parts of a more global map.
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