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Abstract—For indoor localization systems, Radio Frequency
Identification (RFID) is an often chosen technique. A passive
UHF RFID label can be localized via Received Signal Strength
Indicator (RSSI) values using a Constrained Unscented Kalman
Filter (CUKF). A camera-based localization technique which
employs back projection method and movement estimation is
combined with the RFID-based localization. This camera-assisted
localization technique leads to an increase in localization accuracy
by a factor of two compared to the Constrained Unscented
Kalman Filter without camera assistance which already per-
formes twice as good as the Unscented Kalman Filter (UKF).
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I. INTRODUCTION

Due to the invention of Radio Frequency Identification

(RFID), many new applications became possible, such as the

automatic identification and tracking of goods in logistics,

tracking of legal document copies or sport items and many

more [1], [2]. Additionally to the main purpose of identifying

objects, also the localization of items can be achieved simul-

taneously via this technique.

In this paper, a camera-assisted localization algorithm based

on a Constrained Unscented Kalman Filter (CUKF) is devel-

oped which uses Received Signal Strength Indicator (RSSI)

measurements from an unknown tag for RFID localization as

well as the localization result of a camera-based localization

method. This camera-based localization is done using a color

histogram approach to detect the RFID-labeled object and a

movement estimation to follow it in consecutive images to

keep track of the object. The accuracy of the localization is

improved due to the camera-based localization information

because of its high location accuracy compared to the rather

noisy RSSI measurements which are the basis for the RFID-

based localization.

The scenario in which the camera-assisted localization al-

gorithm is tested is the following: trolleys with yellow boxes

which are labeled with an RFID tag are leaving or coming

into a mail distribution center of Deutsche Post AG. This

localization would allow for a tracking of the boxes (or

trolleys) to prevent loss and to be able to connect different

boxes with a trolley to the same tour taken by a truck. This

connection would eliminate packaging errors where a trolley

on a trip to a certain city is being stacked with boxes to

a different destination. Because all of the mail distribution

centers in Germany shall be equipped with the localization

system, low-cost hardware is needed prohibiting the usage of

custom designed readers, antennae or cameras. Therefore, only

the RSSI values and the video sequence taken by an off-the-

shelf camera are available as measurements and an intelligent

algorithm needs to be able to achieve an accurate localization.

The paper is organized as follows: In Section II, previous

work on the topic of localizing passive RFID labels based

on RSSI readings is presented and the combination with a

localization based on image processing is described. Section

III depicts the localization algorithm which relies on an

Unscented Kalman Filter and the camera-based localization

approach. This is followed by a description of the simulation

and its results, which are based on measured data, in Section

IV. After that, Section V illustrates a demonstration tool which

can perform a real-time localization based on the proposed

method and is used to verify the simulation results. The paper

finishes by giving a conclusion and an outlook on future work

in Section VI.

II. PREVIOUS WORK

Many different methods have been explored for the localiza-

tion of active as well as passive RFID labels or the localization

of readers due to fixed tags. A variety of parameters can

be chosen to achieve a location estimate depending on the

use case and the available hardware. [2]–[5] give a good

overview over many of the systems and outline their different

approaches. For the course of this paper, the focus is on the

localization of passive RFID labels via RSSI measurements in

combination with image processing.

In [6], [7], results of RSSI based localization of passive

UHF RFID labels with the help of different Kalman Filters

are presented. A Kalman Filter has been chosen because

this type of filter has shown good results on RFID-based

localization in the past [8]. However, as stated in [9] and

[10], RSSI is not always reliable as a localization parameter

due to changing environmental conditions leading to multipath

propagation and reflections which will result in noisy RSSI

measurements. Therefore, in [11] an environmental-adaptive

RSSI based positioning algorithm is proposed which is used
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in [12] as an addition to the well-known system “LAND-

MARC” [13], where reference tags and a k-nearest neighbor

(kNN) approach are applied to localize an active tag in two

dimensions. The applicability of “LANDMARC” for passive

tags and a three-dimensional localization has been shown in

[14]. However, the localization is still only based on RSSI

readings and might suffer from different effects influencing

the electromagnetic wave and the resulting measurements. To

overcome this problem other sensors can be incorporated into

the localization process.

One possible sensor which can additionally be used for

a localization is a camera. The combination of RFID-based

and camera-based localization is shown to be working for a

moving RFID reader and fixed tags in [15]–[17]. Isasi et al.

[18] also use a combined RFID- and vision-based approach

for fixed reader antennae and moving tags as it is done in this

paper. Their focus though was the identification of persons and

objects via RFID and the localization was only based on the

camera image. This is contrary to this paper’s approach where

both methods are combined to achieve higher localization

accuracy.

III. LOCALIZATION ALGORITHM

This section is divided into four subsections: The first

three contain the different basics for the proposed localization

method. The last subsection shows how these different parts

are combined.

A. Unscented Kalman Filter

The localization algorithm used for the camera-assisted

localization of a passive UHF RFID label is based on an

Unscented Kalman Filter (UKF) [19]. This type of Kalman

Filter is able to incorporate non-linearities in the process

and/or measurement function through stochastic linearization

and is needed because the measurement function in this

application is non-linear.

The input is a Gaussian location (x, y and z) and velocity

estimate (vx, vy and vz) of the previous time step t− 1 with

mean xt−1 and covariance Pt−1. The necessary calculations

of the Unscented Kalman Filter are shown in Table I in Eq.

(1) to (12) and are explained as follows:

In the first step the Sigma Points of the previous time step

are calculated where γ =
√

n+ δ and δ = α2(n+κ)−n with

α and κ as scaling parameters and n as the dimension of the

state space which equals to six according to the three location

and the three velocity estimates.

Next, these points are propagated through the control func-

tion g and a predicted mean x̄t and covariance P̄t are calculated

where wm and wc are the weights according to

w[0]
m =

δ

n+ δ

w[0]
c =

δ

n+ δ
+ (1− α2 + β) and

w[i]
m = w[i]

c =
1

2(n+ δ)
for i = 1, . . . , 2n

TABLE I
THE UNSCENTED KALMAN FILTER ALGORITHM

χt−1 =

(

xt−1 xt−1 + γ
√

Pt−1 xt−1 − γ
√

Pt−1

)

(1)
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∗
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2n
∑

i=0
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∗
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[i] (3)
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2n
∑
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[i]
c ( χ̄∗

t
[i]
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∗

t
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T + R (4)
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(

x̄t x̄t + γ

√

P̄t x̄t − γ

√

P̄t

)

(5)

Z̄t = h(χ̄t) (6)

ẑt =

2n
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i=0

w
[i]
m Z̄

[i]
t (7)

St =

2n
∑

i=0

w
[i]
c (Z̄

[i]
t − ẑt)(Z̄

[i]
t − ẑt)

T + Q (8)

P̄
x,z
t =

2n
∑

i=0

w
[i]
c (χ̄

[i]
t − x̄t)(Z̄

[i]
t − ẑt)

T (9)

Kt = P̄
x,y
t S−1

t (10)

xt = x̄t + Kt(zt − ẑt) (11)

Pt = P̄t − KtStKT
t (12)

with β as a scaling parameter and R as the covariance matrix

of the process noise.

With the help of x̄t and P̄t, new Sigma Points χ̄t are calcu-

lated, which now capture the uncertainty after the prediction

step. For each of these Sigma Points, a predicted observation

point is computed through the measurement function h. Now

Z̄t is used to calculate the predicted observation ẑt and its

uncertainty St where Q is the covariance of the additive

measurement noise.

For the calculation of the Kalman Gain Kt, the cross-cova-

riance P̄
x,z

t between state and observation is needed. In a final

step, the outputs xt and Pt of the Unscented Kalman Filter

can be computed with the help of the Kalman Gain Kt and

the measurement zt.

B. Constrained Unscented Kalman Filter

To incorporate different constraints into a Kalman Filter

and convert it into a Constrained Unscented Kalman Filter

(CUKF), various approaches are possible [20]. For the method

proposed in this paper, two of those approaches are chosen:

The first is a so-called “Perfect Measurement” which augments

the measurement vector by components which are known and

therefore have zero measurement noise. In this paper it is the

height (y-coordinate in location estimate) of the RFID label

which is always the same because the tag is fixed to a certain

object (the yellow box), which is placed on a bigger object

(the trolley). However, the missing measurement noise might

lead to numerical problems. That is why it is transformed into
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a “Soft Constraint” which has to be approximately satisfied,

i.e. a small nonzero measurement noise is assumed.

The second constraint is found with the help of the camera:

only when an object is found in the present image, a localiza-

tion result is available. This means on the contrary that if no

camera-based localization result is obtained the object is not

in the area which can be overseen by the camera. This leads

to constraints for the width (x-coordinate of location estimate)

and depth (z-coordinate) component of the location estimate.

As described in [21], this constraint has to be checked at

different stages of the UKF algorithm: First, it needs to be

examined when the Sigma Points of the previous time step

are calculated (as in Eq. (1)). The constraint has to be checked

a second time after the Sigma Points are propagated through

the process function (after Eq. (2)). A third examination is

necessary after the estimation of the new location (see Eq.

(11)) if the UKF violates the constraint.

C. Camera-based localization

For the vision-based part of the localization method, an

inexpensive off-the-shelf camera is used. Thus, the noise of

the image is high and the image quality is poor which narrows

down the number of algorithms which are usable for this

localization. It has been decided to employ an algorithm based

on a color histogram method analogue to parts of [22]. For

this method, it is necessary to have sample data of the object

which should be localized to train the algorithm. Based on

this sample image, the color histogram of the object which

shall be found is calculated. To calculate such a histogram,

a so-called “Back Projection” is done. Back projection means

that the image is converted into a grayscale image where every

pixel of the image is chosen to belong to a certain group of the

histogram based on its color scale value. In the back projection

image, the pixel gets the dedicated grayscale value depending

on the occurrence of this color in the picture. The range of

the value is scaled between 0 and 255. The back projection

image has a high probability of light image sections where the

wanted object is to be found (see Fig. 1(b)). If morphological

operations and thresholding are applied afterwards, smaller

areas are merged to a continuous larger one and as a result

of the thresholding a black and white picture is generated. In

this picture, the connected areas are said to be relevant regions

(see Fig. 1(c)). In these regions, a rectangle is placed and the

center is said to be the desired location of the object. However,

the procedure has the disadvantage that if the object contains

to many colors, its histogram is not unique and the area on

which the object is found might be too large. This is not the

case here in our scenario because the boxes are unicolored.

For the localization of the yellow box, it has to be kept

in mind that it shall not only be localized once, but that its

path should be tracked. Therefore, it is necessary to find the

same yellow box in consecutive images. For that reason, once

a box is detected, it is labeled with an identification number.

To verify if the same box is found in the next image, a simple

movement model is set up which assumes that the object is

moving with a constant velocity. If an object is detected close

(a) Original image

(b) Grayscale image after back projection

(c) After morphological operations and thresholding

(d) Final image with found objects

Figure 1. Steps of back projection object detection
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to the last location, it is said to be the same as the previous

one and the ID is kept. However, if for example an object is

leaving the image in the upper part and in the next picture

a new object is appearing at the lower part of the image, it

cannot be the same object and it will receive a new ID.

As can be seen in Fig. 1(d), the back projection method

has the ability to find more than one object per image. This

is of importance because a trolley can carry a couple of the

tagged yellow boxes or more than one trolley with a box can

be in the camera’s image. With the proposed camera localiza-

tion approach, it is therefore possible to distinguish between

different RFID-labeled objects and a matching between RFID

and camera localization can take place if needed.

It should be noticed that the camera is placed above the

area where the localization will take place so that it cannot

be obscured by other objects. Additionally, this rather simple

algorithm for the object localization has been chosen because

it does not depend on light conditions and a minimum of light

can be secured because the localization is performed in an

indoor scenario where employees need a certain amount of

light to perform their work anyway. On top of that, only small

changes in the lightning conditions are likely to happen if the

gate of the distribution center is opened or closed.

D. Camera-Assisted RFID-Based Constrained Unscented

Kalman Filter for localization

For the localization of the passive RFID label which is

attached to a yellow box the state vector x of the Kalman

Filter consists of the location in x-, y- and z-direction as well

as the three velocities in each direction

x (1 : 6) = [x y z vx vy vz] . (13)

The process function g maps the movement of the tag

from the previous time step to the present: the location of

the actual time step is the location of the previous time step

plus the velocity times the time difference between the two

measurements ∆t. The velocity is said to be the same leading

to

g = [x(1 : 3) + x(4 : 6) ·∆t x(4 : 6)] . (14)

Because of the height constraint, it is known that the y-

coordinate is not changing and that the velocity in that

direction is equal to zero. Additionally, g is a linear function

so that a matrix vector multiplication is possible. Taking these

two facts into account the process function g in Eq. (2) can

be substituted by the matrix F

F =

















1 0 0 ∆t 0 0
0 1 0 0 0 0
0 0 1 0 0 ∆t

0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 1

















. (15)

As described in Section III-B in the following steps of the

Constrained Unscented Kalman Filter the compliance with the

constraints due to an existing or non-existing camera-based

localization estimate has to be checked.

A second check which needs to be done is the matching be-

tween RFID-based and camera-based localization. Because the

camera area is in the middle of the area which is covered by the

RFID antennae, a RFID-based localization result is available

when the first camera localization takes place. Therefore, a

simple matching between those two localizations results based

on a distance threshold can be used. If the difference between

the two location estimates is below a certain threshold, the

camera-based location estimate is integrated into the RFID-

based CUKF.

The next step of the localization is the

measurement function h of the Unscented Kalman

Filter which consists of the distance measurements

di =
√

(xi − x)2 + (yi − y)2 + (zi − z)2 for i = 1, . . . ,M
(M equals the number of antennae) where xi, yi, zi are

the antennae positions and x, y, z the a priori estimates

of the coordinates of the object which is localized. These

distances are obtained from the measured RSSI values from

the tag to each of the M antennae. As additional information

(converting the UKF into a Constrained UKF), the difference

between the known height of the tag (because it is fixed

to the box which is placed on a trolley) and the estimated

y-coordinate has to be zero. If existing, the difference of the

location estimate of the camera-based localization and the x-

and z-coordinates of the RFID-based localization should be

zero as well. This leads to a measurement function h like

h =



















√

(x1 − x)2 + (y1 − y)2 + (z1 − z)2

...
√

(xM − x)2 + (yM − y)2 + (zM − z)2

y − yheight
x− xcam

z − zcam



















(16)

where yheight is the known height at which the tag is posi-

tioned, xcam and zcam are the estimated locations in x- and

z-direction from the camera-based localization.

The size of the measurement function might vary in the

course of the simulation depending on the number of antennae

from which RSSI measurements are available at the present

time step and depending on the environmental conditions

and the actual location of the tagged object because not

all antennae will always get readings from the tag. Another

factor influencing the size of the measurement function is

whether a camera-based localization is available. The size of

the measurement vector zt also changes over time. It contains

the measured distances d (calculated from the measured RSSI

values), a zero for the difference between height yheight
and measured y-coordinate and two zeros for the difference

between camera-based localization result (xcam,zcam) and the

x- and z-coordinate. If no image-based localization is available

these two zeros are omitted.

If the constraints were exactly kept, the covariance matrix of

the measurement noise Q would contain zeros at the diagonal

at these positions. But especially at the beginning of the local-

ization process when the location is not yet estimated correctly
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this would lead to computational instabilities. Therefore, the

constraints are softened meaning some deviation from this

location is allowed leading to a nonzero element in the noise

covariance matrix. These constraints can be hardened after

some estimations when a good localization is already achieved.

This approach makes sense for the y-coordinate using the

height information, but is not reasonable for the camera-based

localization because here the location of the center point of the

object is calculated by the camera-based localization method.

Therefore, the measurement noise in these components is the

same during the complete estimation process.

IV. RESULTS

To test the performance of the proposed algorithm in a

real world scenario, a test setup is build up consisting of an

Intermec IF 61 Enterprise Reader, Joymax Electronics APX-

026XNFR9 circular polarized patch antennae with 8.5bBic

gain and the passive RFID tag Omni-ID Max Rigid Case for

the RFID-based localization. The camera-based localization

is done with a Playstation Eye camera from Sony Computer

Entertainment.

Before the algorithm can be tested RSSI measurements at

different distances are taken to find a relation between the

RSSI values and the distance. This process can be repeated

quite easily if the setup is transfered to a different place to

take disturbances into account like multipath propagation or

reflections and therefore adjust the formula between RSSI

measurement and distance.

To now verify the algorithm, some test data is taken in

this real world scenario and given to a Matlab simulation

which computes the location based on the proposed camera-

assisted Constrained Unscented Kalman Filter algorithm. The

following parameters need to be set:

• Locations of antennae and correct tag location

• Initial state vector x0 and its covariance matrix P0

• The process noise covariance matrix R

• The measurement noise covariance matrix Q for different

scenarios (with or without camera-assistance).

The time difference ∆t between the estimations can be

extracted from the collected RSSI data because it has a time

stamp included.

To be able to verify the error of the localization approach,

the Root Mean Square Error (RMSE) of the location estimates

is calculated as the difference between the estimated and the

correct location as

RMSE =

√

∑k

t=1(x̂t − xt)2 + (ŷt − yt)2 + (ẑt − zt)2

k
(17)

where x̂t, ŷt, ẑt are the estimated and xt, yt, zt are the correct

coordinates and k is the number of estimates.

A. Stationary test case

A first test case is to place the tagged object at a fixed

location and take the RSSI measurements. The error is about

TABLE II
RESULTS OF 3D LOCALIZATION FOR STATIONARY TAG

Algorithm UKF CUKF height CUKF cam

RMSE 136cm 60cm 26cm

26cm for the proposed localization algorithm when RSSI read-

ings from four antennae are available for the localization. This

result of the Camera-Assisted Constrained UKF (CUKF cam)

can be compared to

• an Unscented Kalman Filter without camera-assistance

(UKF) and

• a CUKF with the height of the tag as a constraint, but

without the knowledge of the camera-based localization

(CUKF height).

The results of the various algorithms are shown in Table II for

the stationary test case.

It can be seen that the incorporation of the height constraint

already decreases the localization error by roughly a factor 2 in

comparison to the UKF and that the camera-assisted approach

in combination with the height constraint is able to localize the

object with higher accuracy compared to the methods without

the camera assistance.

This higher accuracy of the camera-assisted localization can

be explained by the additional information which is available

through the image and the localization based on it. Particularly,

it is not based on the properties of the electromagnetic wave

like the RSSI measurements and therefore it is not subject to

the same disturbances. This results in an excellent surplus to

the RFID-based localization.

B. Moving test case

For a moving object, the tagged box on the trolley is driven

once through the localization area on a straight line pushed

by a person. Therefore, the velocity is not always the same

as well as the line might not be completely straight. Hence,

the error between the location estimate and the correct path

can just be approximated, especially because the correct z-

coordinate (depth) of the path is not known all of the time. Fig.

2 shows the results for the three dimensions separately, where

approximately 140 estimates span a time of about 18 seconds.

Only when the trolley with the yellow box is pushed through

the range of the camera, the camera-assisted localization can

take place. At the beginning and the end of the movement,

the location estimation is done solely based on the RSSI

measurements which is then equal to the information of the

CUKF height (which is shown in dotted lines in Fig. 2).

For the z-component of the position estimate, a ground truth

(dashed line) is only available in the camera area (based on

the image).

Apparently, the location estimation is imprecise in the x-

coordinate especially at the beginning of the localization

process. However, the bad result at the beginning is not only

due to the missing camera assistance and the initial value

x0 of the filter: At the first estimates there is just the RSSI

measurement of one RFID antenna on which the complete
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Figure 2. Simulation result for moving tag with partial camera-assisted
localization separately for x-, y- and z-coordinate

localization is based. After RSSI measurements from a second

antenna are available (after estimation 20), the positioning is

less erroneous already. The results for CUKF height (dotted

line) and CUKF cam (straight line) are the same in this area.

In the course of the localization process, the location estimate

is getting very precise particularly when a camera localization

result is available and used for the localization (straight line).

If the camera localization result is not used additionally to

the RFID-based positioning, the error is still acceptable if the

object is inside an area where many RSSI measurements are

available (corresponds approximately to camera area). How-

ever, if the object moves out of this area, its location based on

the CUKF height is estimated quite badly especially regarding

the z-coordinate, which is the depth component of the object.

This is not the case when the camera localization result has

been used in the camera area. Even when it is no longer

available the localization based on the RSSI measurements

is quite good because the starting point for this period of

localization is better and because of the additional constraints

from the missing camera-based localization. The overall error

for this test case (inside the camera area) is about 75cm when

the CUKF height is used compared to a localization error of

just around 36cm for the CUKF cam.

V. DEMONSTRATIONS

To accurately demonstrate the suitability of the proposed

localization algorithm, a demonstration tool has been imple-

mented to be able to test the approach in real world scenarios.

It is possible to use different localization algorithms with or

without camera-assistance. The program is able to convert the

pixels at which an object is found into a location in x-, y-

and z-coordinates if reference points are given to compute the

relation between pixels and coordinates.

Fig. 3 and Fig. 4 show a screenshot of the demonstration

tool and the camera image during the real time localization,

RSSI readings Location estimate

Figure 3. Screenshot of demonstration program

x

z

Figure 4. Screenshot of camera image with RFID-based and camera-based
localization

respectively. In Fig. 3, the localization via RFID can be

seen for one tag in x-, y- and z-coordinates as well as the

actual measured RSSI values. Different settings are possible

concerning the localization approach (which filter shall be used

for the localization). The maximum number of antennae and

their locations as well as the camera setting (white balance,

gain, etc.) can also be changed.

Fig. 4 is a camera image where it can be seen that the

path on which the tag (attached to the yellow box) has been

estimated to be moving has some errors (blue line). This is

due to the fact that for the estimation of this path only the

UKF with height constraint (CUKF height) has been used. It

can be derived from the camera-based localization result (red

rectangle around yellow box) that it would be advantageous to

integrate this image information into the localization process

as it is proposed in this paper to reduce the positioning error

in this scenario.

This demonstration tool can be adapted easily if new

localization algorithms shall be tested and it can be used for

stationary as well as moving test cases. It is also possible to
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train the algorithm to find different objects in the camera image

when a test image is given from which the back projection can

be done and compared to the actual image.

VI. CONCLUSION AND FUTURE WORK

In this paper, it is shown that the proposed Camera-Assisted

Constrained Unscented Kalman Filter is able to localize a

passive UHF RFID label accurately. Compared to an UKF

and a CUKF without assistance from the camera, it achieves

higher localization accuracy in different real world scenarios.

The usage of a localization system solely based on the camera

has the disadvantage of a very small coverage area and it

would not be able to identify different objects of the same

type as it can be done via RFID.

The camera-based localization is exemplarily done for the

yellow boxes on a trolley in this paper. The procedure can

easily be adjusted to find the trolleys in the image as well if

an adequate model is built based on training data. Though, for

the trolley it might not be enough information to use the back

projection image, such that a different image processing algo-

rithm might be needed for a precise localization or a marker

has to be placed on it for localization purposes. However, even

a rough estimate of the object’s location could be helpful as

additional information because only the height constraint is

often not sufficient information for a good localization result.

At this point of time, the algorithm has only been shown

to be able to follow one object in the camera image and it is

automatically said to be the one which is tagged with an RFID

label and from which RSSI measurements can be read just with

the help of a simple matching technique. For future usage in

a real use case, this method can be expanded to localize more

objects via parallel employed filter. Then, a more advanced

matching between the different RFID tags and detected objects

from the image has to be carried out. Therefore, a distance

measurement weighting between the RFID-based localization

and the camera-based localization has to be implemented.

Especially it needs to be considered that more boxes can be

seen as one object in the camera image (as shown in Fig. 1(d))

and their IDs must all be assigned to the same object detected

in the camera image.

A second aspect for future work can be the comparison of

the CUKF to a particle filter which might be able to cope better

with the noisy RSSI measurements. Its disadvantage though is

the higher computational complexity depending on the number

of particles used. A second disadvantage is that only one RSSI

measurement at a time is used for an estimate or an additional

trilateration approach has to be included. To avoid this a so-

called Unscented Particle Filter can be incorporated which is

a combination of Particle Filter and Unscented Kalman Filter.
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