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Abstract—Location-aware computing is a fast emerging area
in mobile computing. A plethora of approaches to indoor locali-
sation have been demonstrated, but almost all rely on extensive
infrastructure. A popular alternative is to use dead reckoning to
track inertial sensors. However, sensor drift must be addressed
by incorporating external constraints such as the building layout.
This dictates the use of computationally expensive particle filters
that hinder scalability, especially during localisation phases where
the system does not have any estimate of where the user is within
a building.

In this paper, we address the scalability problem by exploiting
the latent parallelism in the algorithm and adapting it for
execution on commodity Graphical Processing Units (GPUs). We
describe how to parallelise the particle filter and evaluate differ-
ent filter architectures. We find that our GPU implementation
can iterate 8.8 times faster than the fastest CPU variant.

We also show how to handle multiple filters using a novel
memory paging scheme and an adaptable particle number. We
find that between 17 and 101 users can be localised in real-time
using only a mid-range GPU installed in a standard desktop
machine, compared with at most one using a previous sequential
approach.

Index Terms—Inertial tracking, Particle filters, Localisation,
Parallel processing.

I. INTRODUCTION

The recent trend towards mobile computing has sparked an
interest in location-aware applications. These have been very
successful outdoors, where GPS provides global position fixes,
but there is a conspicuous lack of indoor location systems.
Despite many demonstrated indoor location solutions, the
characteristic requirement for precisely-deployed infrastruc-
ture has so far precluded ubiquitous deployment.

One promising approach is the use of inertial sensors to
perform infrastructure-less positioning, or dead-reckoning. The
recent successes in miniaturising such sensors has resulted
in a wide deployment of potential sensors. However, it has
also amplified the typical inertial sensor noise characteristics,
resulting in fast accumulation of drift (positioning error caused
by integrating the inertial measurements). It is not unusual to
observe errors in the hundreds of metres after only a minute
of unconstrained tracking.

Two dominant techniques to address drift have emerged.
The first is to avoid the triple integration typical of inertial
systems (single integration of angular velocity followed by
double integration of acceleration) by using pedometry, de-
tecting when a step has been taken and characterising it based

on duration and similar quantities—i.e. without integrating
noisy data. To account for the errors this itself adds, it has
been necessary to incorporate building maps as a series of
wall constraints using a higher-level particle filter. The second
approach is to provide strong external constraints, usually by
constraining the sensor to be foot mounted [1]. In fact, a
particle filter has proved necessary for medium-term tracking
even for foot-mounted sensors.

The touted platform for these systems is the increasingly
ubiquitous smartphone. However, particle filters suffer from
high computational demands that can preclude their use on
such mobile devices. In this paper, we advocate offloading
the particle filter to dedicated computing infrastructure in the
building. Such a system would alternate between performing
the computation locally on the mobile device and performing
it remotely on the server while the sensor data is streamed over
the network. As a first step towards enabling such a system,
we show how to exploit the latent parallelism in the location
particle filter to adapt it for efficient execution on commodity
Graphical Processing Units (GPUs), thereby offering scalable
localisation services to multiple devices concurrently.

Specifically, we make the following contributions:

• We define the characteristics of the location particle filter
and identify its parallelisation opportunities. We focus on
making the resampling step efficient and appropriately
adapting the number of particles dynamically.

• We show how to map the parallelisable portions of a
single filter onto a GPU architecture. We partition the
computation in such a way that data transfers between
the GPU and CPU are minimised while the available
parallelism is maximised.

• We show how to localise multiple users by running
multiple filters on the GPU concurrently. We develop a
novel paging scheme for managing particles which makes
sure that the memory used up by each filter is adjusted
as the number of required particles is reduced.

• We provide extensive evaluation of our GPU-based lo-
cation system using previously published real world data
and compare its performance with both a sequential and
multithreaded CPU implementation.

The paper is structured as follows: in Section II we study
related work; Section III provides an overview of the structure
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and function of a parallelised particle filter; in Section IV
we discuss our evaluation approach; Sections V and V-B
look at the use of a GPU to optimise the localisation of a
single device; Section VI then extends this to multiple devices
needing simultaneous location results. We evaluate our system
experimentally throughout and provide concluding remarks in
Section VII.

II. RELATED WORK

Pedestrian inertial navigation systems began with Foxlin’s
work on foot-mounted inertial sensors [1]. Foxlin introduced
zero velocity updates (ZUPTs)—whereby the sensor is essen-
tially recalibrated when the foot is in contact with the floor
and is therefore stationary—and applied an Extended Kalman
Filter to generate step events describing each step in terms of
a {length, heading} vector. ZUPTs greatly extend the tracking
range of the sensors, but drift inevitably builds to the point of
domination.

Krach and Robinson [2]; Widyawan, Klepal and Beaure-
gard [3]; and Woodman and Harle [4] independently incorpo-
rated building maps via particle filters to help constrain the
drift accrual. Particle filters [5] are numerical approximations
to Bayesian filters and are composed of a set of particles. In
this context, each particle represents a distinct hypothesis for
the user’s location and contains a weight value that represents
the current confidence in that particular hypothesis. The filter
continuously updates the particles based on incoming step
events. This makes it particularly easy to incorporate 2D maps:
each room is stored as a simple polygon and any particle that
crosses a polygon (equivalent to walking through a wall) is
assigned a weight, w=0. The process is illustrated in Figure 2,
where each particle is represented by a filled circle (w=1) or a
hollow circle (w=0) and the true position is shown by a blue
cross. In Figure 2(a), N particles are uniformly distributed
under the assumption we do not know where the user is. In
Figure 2(b), a step event shifts all particles to the left; some
cross the wall boundary and are assigned w=0. In Figure 2(c)
we resample—i.e. we create N new particles by cloning the
current set in proportion to their weights. This implicitly
removes those that crossed the wall, whilst ensuring N is not
reduced for the next step. The three steps of the cycle are
described in more detail in Figure 1.

As more steps are integrated, the particles should either
converge on the true position as shown in Figure 3 or a
positioning failure occurs, where there are no particles with
non-zero weights left (Figure 4). In such cases we must
completely restart the filter.

Woodman et al. reported that N ≈ 106 particles were
needed to reliably localise a pedestrian within a building of
8725 m2 and that a dedicated desktop machine could only
update 300,000 particles per second [4]. However, they also
noted that far fewer particles were needed once the particle
cloud had converged. They considered there to be two regimes:
localisation before the cloud had converged; and tracking once
it had. The transition between the regimes typically occurred
after tens of steps.

1) Propagation. The new state of each particle is
predicted from its previous state and a motion
model. Each particle is displaced by a vector
that matches the step event and perturbed by
noise to represent the event measurement error.

2) Correction. The particle weights are recom-
puted based on information from the map. All
particles that pass through walls are assigned
a weight of 0.0 (shown as hollow circles in
Figure 2(b)).

3) Resampling. We draw a new set of parti-
cles from the distribution approximated by the
remaining particles. Particles are sampled in
direct proportion to their weight, making it
more likely that the trusted hypotheses will
continue to the next iteration (in our simplified
example, all particles within the room have
equal chance of being sampled, whilst those
outside the room will not be sampled at all.)
Assuming the particle set has a constant size,
some particles will be duplicated in the next
iteration as shown in Figure 2(c).

Fig. 1: The particle filter steps.

To allow more tractable values of N , researchers have either
provided an initial hint about the user’s location [2], [3] or
incorporated WiFi fingerprinting to bound the area in which
the user is to be found [6]. The latter is a scalable solution
that can dramatically reduce N . However, N may still be too
large for a mobile device such as a smartphone to run in
realtime since integrated device sensors are invariably of lower
quality than the test devices used to date and they cannot be
constrained to lie on the foot. The associated increase in error
demands an increase in the N to avoid positioning failure.
Timeliness issues aside, the processing would also adversely
affect both its battery lifetime and its core performance.
Constant WiFi scanning in particular is a costly task.

An alternative approach is to offload as much processing
as possible from the mobile device. In principle, it could
be used as a pure wireless sensor, constantly reporting the
raw sensor data to a network processing service. However,
this would entail sending a constant stream of sensor data
to a server, which would itself severely impact lifetime and
performance. Instead, we advocate processing the sensor data
into step events on the mobile device, and then offloading
these to a network processing node that can apply a particle
filter. With a typical generation frequency of 1 Hz and a size
of a few bytes, the step events put minimal load on the mobile
device’s wireless controller.

In such an architecture, it is essential that the processing
infrastructure be scalable—it is not realistic to require a
dedicated desktop-grade machine for every building user. In
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Fig. 2: First iteration of a particle filter.

Fig. 3: Second, third and fourth iterations of a particle filter showing convergence.

Fig. 4: Example of the particle filter with reduced number of particles.

this work we seek to parallelise the location particle filter and
use commodity GPUs to increase the number of concurrent
filters. There is an added benefit that such a system could
apply directly to future mobile devices that feature their own
GPU.

Parallelised particle filters running on GPUs have already
been demonstrated in the image processing domain [7]–[11].
However, there are important differences between this and the
pedestrian tracking domain:

• Number of particles. The total number of particles in
imaging applications rarely exceeds 103 [12]. Quality is
improved by expanding the dimensionality of the particle
state rather than increasing particle numbers. Filters for
location have small state dimensionality and particle sets
in excess of 106 may be necessary.

• Particle weighting procedure. Weight assignment is
the usual motivation for using GPUs in imaging, since
generating comparison images or comparing many state
dimensions is a slow process. For location filters, the
motivation for parallel processing is the sheer number
of particles.

• Particle number adaptation. For efficiency it is wise
to dynamically adapt the number of particles in a filter.
This has been used for visual tracking, where reported
reductions of 20% are possible. In contrast, reductions of

around 90% can be seen for location systems [4].
There have also been attempts to boost particle filter per-

formance using GPUs in other domains [13]–[17]. These
approaches were also designed for smaller sets of particles:
[13]–[16] reported evaluation for less than 105 particles with
super real-time processing times, while [17] reported duration
of about 100s per step for 106 particles. In contrast, our
approach, using comparable hardware, enables processing of
even larger particle sets within less than a second per step.

Parallelisation of particle filters on a network of computers
has also been investigated in prior work [18]–[23]. These
works targeted generic, canonical examples of particle filters
with the main concern being how to perform the filter’s
resampling step in a distributed setting.

III. PARALLELISING THE PARTICLE FILTER

The structure of the particle filter makes it a promising
target for parallelisation. The first two steps, propagation
and correction, are naturally parallelisable as they involve
processing only the local state of each particle. The final step,
resampling (see Figure 1), can also benefit from parallelisation,
although it is predominantly sequential. However, its parallel
formulation is not as straightforward since it depends on joint
processing of all particles. Indeed, resampling is regarded as
the major challenge in parallelising particle filters [19]–[23].
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The difficulty is that the resampling step requires a global
view of the particle weights in order to ensure it resamples
in proportion to the weights. There are various resampling
procedures that can be used, but all require this global view
that hinders parallelisation. In our implementation we have
used the most prevalent algorithm: Sequential Importance
Sampling with Re-sampling (SISR).

Our implementation of SISR involves numbering each parti-
cle and then forming a mapping between the particle number
and the cumulative weight (the cumulative weight sum, or
CWS). The CWS can be computed in parallel by a parallel
prefix-sum (scan) algorithm [24]. To resample N particles,
we draw N random numbers uniformly between zero and the
sum of all weights (i.e. the maximum CWS value). With each
random number we look up the particle number associated
with that value, clone it, and add it to the resampled set.

It is useful to dynamically vary N both because it minimises
the necessary resampling effort, and because it allows optimi-
sation of memory to support multiple filters simultaneously.
As in [4], we apply the KLD (Kullback-Leibler Distance)
adaptation first described in [25]. If we consider the set of
particles at each iteration as an approximation of an underlying
distribution, KLD is a statistical procedure that provides a
bound on the error introduced when reducing the set size.
A growing error means that more resampling is needed; a
shrinking error allows us to use fewer particles.

In our KLD implementation, we divide the building floor
into a regular grid of bins. We add a small step to the end
of the propagation-correction-resample cycle that computes
the bin to which each particle belongs. As we iterate in the
filter, we continually evaluate the KLD number, terminating
the resampling process whenever it falls below the number of
particles we have already resampled.

We give details of our GPU implementations of the resam-
pling step in Sections V-A and V-C.

A. Scaling to Multiple Users

Although not well defined, we expect the transition between
the localisation regime and the tracking regime to occur within
tens of steps taken by the user. At any given moment we
expect only a minority of building users to be in the costly
localisation regime. In this work we exploit this to efficiently
share GPU resources amongst multiple filters. We address two
sub-problems in turn:

1) implementing a single location filter on a GPU; and
2) efficiently running multiple GPU-based location filters

concurrently.

IV. THE APPROACH TO EVALUATION

Before dissecting our GPU-based filters, we briefly discuss
GPU limitations and our experimental setup.

A. Dealing with GPU Limitations

Whilst GPUs have become very powerful in recent years,
they still have limitations that must be addressed for any
general purpose computation such as a particle filter. The two

Start / End

Fig. 5: Trace in a three-storey building [4] used as an input in experiments.

primary limitations are host-GPU communication bottlenecks
and small amounts of on-board GPU memory.

Communication bottlenecks occur when transferring large
volumes of data between the host (CPU) and GPU memories,
a process that is typically very slow relative to the data
processing speeds of the GPU as a whole. Therefore, in
our implementation we try to minimise the data transferred
between host and GPU.

The on-board memories available on a GPU include fast,
dedicated local memory available to each thread. Unfortu-
nately such memory is typically too small to accommodate
the high particle numbers, particle state size and complex map
data of our particle filter. The consequence of this is that filters
must use the slower forms of memory on the graphics card,
most notably the large but slow global memory. We judiciously
use the local memory to alleviate the penalty of using global
memory whenever possible.

B. Implementation and Evaluation Setup

We have implemented and evaluated a single and multiple
users version of the location filter on a GPU (see Sections
V and VI). The CPU version of the filter (the baseline) was
implemented in C using POSIX threads, while the GPU-based
filters were implemented using the CUDA platform for GPU
computing from NVIDIA1.

To benchmark the various filters we used the data from [4].
These data were collected in a 8725 m2 building with three
floors and contain step events and a detailed building model—
full details were provided in [4]. For this paper, we singled
out a representative trace (see Figure 5) and used it as an input
in all reported experiments. The performance was similar for
other collected traces.

All tests were executed using a standard desktop host and
a mid-range consumer NVIDIA GPU (see Table I).

1http://developer.nvidia.com/cuda

http://developer.nvidia.com/cuda
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CPU
Model: Intelr CoreTM2 Quad
CPU clock: 2 GHz
OS: Ubuntu 9.04 (64 bit)

GPU
Model: GeForce GTX 460
No. of multiprocessors: 7
No. of cores: 48
GPU clock: 1.42 GHz
Computing capability: 2.1
Driver ver: 3.20

TABLE I: Hardware setup.
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Fig. 6: Structure of the GPU particle filter.

V. A SINGLE FILTER ON A GPU

We now describe how we mapped the parallelisable portions
of a single filter onto a GPU architecture. We do so first for
the standard filter with SISR resampling (Section V-A) and
then for the variant with KLD adaptation (Section V-C).

A. Structuring the Filter for a GPU

The particle filter algorithm is comprised of an initialisation
stage that allocates space for the particles and draws an initial
particle set, followed by an iteration stage that carries out
the propagation, correction and resampling steps (Figure 1)
in a continuous loop. We mirror these stages in the GPU
implementation of the algorithm.

Figure 6 illustrates the structure of our GPU filter. In the
initialisation stage, we copy map data to the GPU, allocate
GPU memory for particles and then use a GPU kernel to
draw the initial (uniform) distribution of particles. Because
the polygons used to describe the environment are quite
complex (we allow both convex and concave shapes), this

is a computationally expensive task. The GPU kernel is run
in such a way so that one thread is assigned per polygon.
Inevitably this approach causes uneven workload distribution
among working threads which is not desirable on the GPU.
However, we store the resultant particle distribution on the
GPU and re-use it to initialise every particle filter. In this way
we only have to generate the particle set once in the lifetime
of the program, so generating it directly on the GPU avoids
the start-up overhead of a large data transfer. We consider
the map data to be immutable (a reasonable proposition for
most buildings) so we store it in the read-only cached texture
memory rather than in the global device memory of the GPU,
to allow faster memory access. The use of texture memory
boosted the performance of the GPU filter by up to 40%.

The iteration stage is an adaptation of the traditional par-
ticle filter to perform a resample-propagate-correct sequence
of steps rather than the more traditional propagate-correct-
resample. The cyclic nature of the filter means this makes no
difference to the outcome, but it enables us to use a single GPU
kernel to embody the particle filter iteration. We can compute
the CWS either sequentially with a single GPU thread or in
parallel using the parallel prefix-sum algorithm. Parallel CWS
computation has additional costs for data transfer between
local and global memories and for thread synchronisation, so
such an implementation will be faster than the single-threaded
one only for sufficiently large particle sets.

We emphasise that in the GPU filter there is no significant
data movement between the CPU and the GPU. Only the
number of particles and the step data from CPU to GPU and
the location estimate from GPU to CPU are transferred, at
negligible cost. No particle data ever leaves the global device
memory, making the GPU filter fully optimised with respect
to the amount of CPU-GPU data transfer involved.

We discuss the KLD portion of the GPU filter structure in
Section V-C.

B. Filter Performance

The unusual capabilities of the GPU make it hard to predict
whether it would be better to compute the CWS sequentially or
in parallel. Therefore, we experimentally evaluate performance
of the two versions for varying number of particles. Figure 7
shows how the two GPU versions performed against the fastest
CPU version with CWS computed both using a single thread
and parallel prefix-sum. We observe that the single-threaded
CWS computation offers no advantage whatsoever for large
particle numbers used in localisation.

The fastest CPU version was obtained by running the
multithreaded CPU filter, which works by partitioning the
particle set into equal portions and handling each portion
with a separate thread, with 4 threads. Since our CPU has
4 cores, there is no performance benefit in using more than
4 threads on a CPU for running the filter. This effect is
evidenced in Figure 8, which shows how the average time
taken for an iteration of GPU and CPU filters with parallel
CWS varied with the number of particles in use. The massively
parallel GPU filter outperformed the CPU implementation for
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Fig. 7: Average iteration times of GPU filter with single threaded and parallel
prefix-sum CWS computation compared with CPU baselines.
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Fig. 8: Comparison of the GPU filter iteration time with the multithreaded
CPU implementation.

all numbers of CPU threads, and enabled processing of step
events in real time even for the largest particle set containing
16 million particles.

The theoretical computational complexity of the sequential
particle filter algorithm is O(n log(n)), where n is the number
of particles in use. A truly parallel version could achieve
O(log(n)) complexity, but sadly neither the CPU nor GPU
cannot offer this because the number of particles (and hence
the number of threads) exceeds the number of available pro-
cessing units by far. The result is that the practical complexity
of the parallel version of the GPU and all CPU variants
remains the same as the theoretical sequential algorithm, albeit
with a different multiplicative constant. From Figure 8 we find
that the GPU filter gave speed-up of approximately 8.8 against
the 4-threaded CPU variant.
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Fig. 9: Update times of GPU filter with fixed and KLD number of particles
over a sequence of steps.

C. KLD Resampling

Given that the parallel particle filter algorithm offers the
same computational complexity, it is advantageous to use KLD
resampling to keep the number of particles approximately min-
imal at each stage. The portion of the GPU filter in charge of
KLD resampling is illustrated in the shaded region of Figure 6.
We add a new task to the end of the third kernel: computing the
bin to which the updated particle belongs. Because the particle
updates occur in parallel, we must update every particle from
the previous iteration, including assignment of the bin. This
differs from the sequential approach, where we were able
to terminate resampling before it had completed on every
particle by continually evaluating the KLD parameter after
each resample. Here, we first determine bins for all particles
and then in a subsequent kernel calculate the number of non-
empty bins (again using parallel prefix-sum) and the new
number of particles.

To demonstrate effectiveness of KLD resampling, we ran
the GPU filter with the maximal fixed and variable number of
particles on our trace. We measured the duration of each filter
update for each step from the trace. The obtained processing
times are shown in Figure 9. We observe that for the KLD
filter update times plummeted, reflecting the reduction of the
particle set. On the other hand, update times of the filter with
fixed number of particles not only did not improve much but
instead varied significantly. This discrepancy in update times
was caused by geometries of varying complexity occurring at
different parts of the trace (cf. Figure 5).

Next we compared the performance of KLD resampling on
CPU and GPU. Figure 10 shows the mean time taken for
iteration of CPU and GPU filters with KLD resampling for
different bin sizes on trace from Figure 5. We used KLD
with ε value of 1.5% and varied bin sizes from 0.6 m to
4.0 m. Each bin size required initial uniform distribution of a
different number of particles, decreasing as the bin size grew
larger—e.g., 11.4 million particles were required for bin size
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Fig. 10: Average update times of CPU and GPU filters with KLD resampling
for different bin sizes.
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Fig. 11: Comparison of accuracy achieved with sequential and parallel
implementations.

0.6 m, 4.1 million for bin size 1.0 m and 1 million for bin size
2.0 m. While we observe a steady decrease in mean processing
times as the bin size increases for both filters, the CPU
filter manifests much higher standard deviation (indicated by
vertical segments in Figure 10; the standard deviation for bin
size 0.6 m, which is not shown, was 1.46). This effect was also
caused by differences in geometry along the trace. However,
GPU filter benefited from the available parallelism in the GPU
and was able to process step events in complex geometries
much faster than the CPU. Since smaller bin sizes are favoured
whenever possible (the probability of unsuccessful localisation
is higher for larger than for smaller bin sizes), GPU filter
provides much greater benefits than the CPU variant.

a) Run-time profile: To provide a better insight into
the distribution of workload during filter computation we
measured proportions of time spent in different particle filter
stages. Figure 12 shows a profiler-style breakdown for both
CPU and GPU versions of the filter with SISR and KLD
resampling.

b) Accuracy: Figure 11 presents a comparison of the
accuracy of the estimated pedestrian position obtained from
the GPU and CPU versions of the filter. We used the same

ground truth data as used in [4], although we did not use the
clustering algorithm described therein. We observed that the
KLD-enabled GPU filter achieves comparable results to the
slower CPU version and take this as evidence that our parallel
implementation was functioning as expected.

VI. MULTIPLE CONCURRENT PARTICLE FILTERS

Having optimised the particle filter itself, we now turn to
the problem of handling multiple users, each associated with
a distinct particle filter.

Figure 14 depicts our multi-user system. It can work in
one of two modes, fixed or paged, depending on whether the
particle number assigned to each user will be kept fixed or
dynamically adjusted.

When working in fixed mode, the system allocates GPU
memory to hold a fixed number of particles per user and does
not use KLD to dynamically adapt the number in use. If there
is insufficient memory available, users are queued.

In contrast, paged mode initially assigns the same particle
number per user as the fixed mode, but reduces it when the
particle set starts to converge. Over the lifetime of a filter, we
expect the majority of time to be spent in the converged state
and hence this scheme allows more users to be simultaneously
tracked. However, it also requires additional computation to
handle user and particle related data, namely, Kernels 1 and 4
in Figure 14.

It is important to note that in both modes no particle data
(i.e. neither state, weights nor bins) are exchanged between the
CPU and the GPU. Both modes of operation will be explained
in more detail in the next sections.

A. Performance in Fixed Mode

The fixed mode allows us to guarantee that the system
can process a predefined number of users, as dictated by the
available memory. Using our GPU with 2 GB of memory we
were able to support up to 17 concurrent particle filters with
1,200,000 particles. Each filter was updated in a round-robin
fashion as new step events were produced. Figure 13 shows
how long it took to update all of the filters (labelled ‘GPU
fixed’ in figure) for different numbers of system users. To
obtain the results for n users we simply duplicated the input
sensor trace n times. As expected, we observe a linear increase
in the processing time as the number of users increased. This
is simply a reflection that the GPU carried out a very similar
operation on each user in each iteration. The lack of noise in
the trend highlights a further advantage of the GPU: it is not
affected by other processes running on the machine, as the
CPU might be.

Our interest is in how many filters can be concurrently
processed in real time. By this we mean that the processing
of each step for all users must complete before the next step
begins. From the data we have, a typical step lasts 1 s. From
Figure 13 we estimate that our setup could track up to 20 users
in real time (with little extra device memory).
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(a) SISR resampling with a fixed number of particles. (b) Number of particles varied by KLD resampling. The number on x-axis is
the initial particle number.

Fig. 12: Proportions of time spent in different particle filter stages. In all 2-column groups, the left column corresponds to the 4-threaded CPU filter and the
right column to the GPU filter.

B. Paged Mode

Although the fixed mode already gave a significant boost,
it may not be an optimal solution. As we have already
demonstrated, the required number of particles significantly
decreases as we move from localisation to tracking, and
the fixed mode does not exploit this. Dynamically reducing
the number of particles per user not only reduces the step
processing time, but it also frees up the GPU memory that can
then be used to support the tracking of more users. Clearly we
cannot support any more users when all of the current ones
are in the localisation phase (since they each may need the full
number of particles), but this should be a rare occurrence—at
any given moment we would expect the vast majority of users
to be in the tracking phase since the localisation phase lasts
only tens of steps.

This discrepancy is mitigated with the paged mode. In this
mode, our implementation allocates the entirety of the GPU
device memory in the initialisation phase, and manages it
using custom data structures implemented within that allocated
memory (i.e., management was entirely on the GPU). By
creating a paging system, named for its analogy to virtual
memory paging in operating systems, the allocated GPU
memory is partitioned into equal-sized chunks (‘pages’), each
of which can hold the state for a predetermined number of
particles. Two array structures embedded within the allocated
memory keep track of the user-page assignments and the
unused pages.

In the initialisation phase, each filter is assigned just enough
pages to exceed the required number of particles. At the end of
each step, the KLD parameter is evaluated for each filter and
the number of assigned pages adapted to suit the new particle
requirement. Consequently, the number of particles assigned to
a filter is always an integer multiple of the number supported
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Fig. 13: Performance comparison of the multi-user system.

by each page. Figure 15(a) (Figure 15(b)) shows the variation
in particle number (resp. processing time) with respect to the
step number obtained for a specific sensor trace. Results are
shown for a variety of page sizes.

C. Selecting a Page Size

Selecting the optimal page size is more of an art than a
science. Too small and the GPU spends a long time looking
up pages in the large data structures; too large and KLD will
have little effect. We chose a page size to match the typical
number of particles needed in the tracking phase (this was
128,000 particles for our data).

Note that the number of steps it takes for the filter to reach
the tracking mode is greater when the page size is smaller.
Intuitively, this is because smaller page sizes permit more
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regular decreases in the particle number, as per Figure 15(a).
In the future, we hope to consider dynamic adaptation of
the page size, starting with a large value at the beginning of
localisation, and then reducing the page size once the current
particle number reaches the current page size.

D. KLD Overhead

Inevitably, the KLD adaptation and the paging scheme add
an overhead to the processing. The initial overhead is caused
by the binning and evaluation of the required number of
particles at the end of each update. Paging does give one
small advantage here: since we allocate particles in chunks
of the page size, we need only evaluate the KLD factor for
every page rather than for every particle. In the data we have
presented, we used a single GPU thread to carry out the KLD
factor evaluation at every page boundary.

E. Performance in Paged Mode

Because KLD is fundamentally adaptive, it is difficult to
assign meaningful performance metrics. In Figure 13 we seek
to bound the performance by looking at how many users can
be added to the multi-user system when they all fall into the
tracking phase. With the above settings there was sufficient
GPU memory to track 101 users, and enough processing power
in the GPU for all of them to be processed in real time.

VII. CONCLUSIONS

Infrastructure-less positioning systems are promising alter-
natives to fixed infrastructure systems, but they can require
a significant amount of processing. Today’s systems, which
employ a particle filter together with map data to provide
accurate estimates, fail to work in real time.

In this work we have looked at how to parallelise the
particle filter to support high-accuracy localisation of multiple
users using only one standard system. Our main contributions
are in the parallelisation of the location particle filter, its
implementation using a commodity GPU, and its extension
to cope with multiple concurrent users using a novel paging
scheme.

We have evaluated our implementation in detail using real-
world data collected in a large building. Our results show
a significant improvement over the current state-of-the-art.
Whereas previous work using the same data was unable to
process more than one user in real-time (and did not always
achieve even this), our system is able to process between 17
and 101 users in real-time, depending on how constrained their
positions are. In the general case, we would expect the vast
majority of users to be well localised and thus only a few
such systems would be needed to track the occupants of a
large building.

We believe that the use of GPUs or similar parallel process-
ing architectures will significantly enhance the scalability of
future tracking systems and we hope to build on this work
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Fig. 15: Analysis of the paging system.

to demonstrate a building-wide tracking system capable of
tracking all occupants.
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