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Abstract—The work presents a foot-mounted sensor system for
a combined indoor/outdoor pedestrian localization. The approach
is based on a zero-velocity update scheme formulated as an
Extended or Unscented Kalman filter with quaternion orientation
representation and employs a custom low-cost sensor unit. Both
filters are compared in terms of speed and accuracy on a
representative trajectory. A detailed discussion is provided with
respect to different filter state formulations, stance still detection
mechanisms and associated filter parameters. The presented pure
inertial system is augmented with magnetic field measurements
for heading correction. The challenging localization scenario
with an elevator is addressed by augmenting the system with
a barometric pressure sensor for height error correction. The
work also demonstrates how the basic algorithm version can be
extended with reference systems such as GPS and passive RFID
tags on the floor for absolute position drift correction.

Index Terms—Indoor Localization, Pedestrian Navigation Sys-
tem, Zero Velocity Update Method, Unscented Kalman Filter,
Extended Kalman Filter, Inertial Measurement Unit.

I. INTRODUCTION

The location information is often considered to be a fun-
damental requirement for ubiquitous and pervasive computing
where the indoor pedestrian localization is becoming an im-
portant research field of an enormous potential for applications
with context aware services. Although a reliable outdoor
localization can be addressed with GNSS-based techniques,
their usage is mainly limited to open areas with a reliable
access to satellite signals. The indoor or mixed indoor/outdoor
scenarios seem to be far more challenging as the GNSS
signals are usually too weak to penetrate the buildings. A
number of approaches are currently competing to become an
indoor alternative to GNSS systems in terms of the reliability,
ubiquity and, of course, costs.

An increasing attention to the pedestrian localization prob-
lem can be also attributed to a recent development in afford-
able wearable computing platforms. Smartphones and tablet
PCs are the examples of such systems, which are powerful
enough to perform sensor signal acquisition, preprocessing
and run reasonably sophisticated estimation and sensor fusion
algorithms in real time. The availability of a GPS receiver,
inertial and magnetic sensors, Wi-Fi, Bluetooth as well as

access to the maps and other information are making them
perfect candidates to serve as the basis for pedestrian local-
ization systems.

Currently none of the available technologies alone can
completely satisfy the accuracy, flexibility, scalability and
cost requirements for pedestrian indoor localization within an
uncontrolled environment and combinations of several comple-
mentary technologies are often employed [1]. Complementary
sensing modalities are usually combined using the Recursive
Bayesian Estimation (RBE) framework [2], which permits to
treat sensor imperfections, dynamical model uncertainties and
available heuristic information in a consistent way, enabling
a performance, which is in general not achievable with any
single sensor type.

A reliable indoor pedestrian localization can be extremely
helpful for emergency first responders such as fire-fighters,
where one can not rely only on localization methods based on
the external infrastructure such as Wi-Fi while the availability
of the power can not be ensured. Although a basic localization
can be performed using only smartphone/tablet PC built-in
sensors (i.e. accelerometer, compass, WiFi and GPS), such
methods can often provide only a very rough position infor-
mation. One could try to avoid the external referencing sys-
tem by adopting integrated pedestrian dead-reckoning (PDR),
where the inertial sensors (e.g. accelerometer and gyroscopes
constituting the Inertial Measurement Unit - IMU) provide
an internal independent reference, immune to interference and
signal shadowing. However, an affordable inertial system can
be hardly used for any longer time period due to fast accu-
mulating integration errors. Although additional sensors such
as a magnetic compass are often integrated into the inertial
modules to bound the heading error, an external referencing
is still necessary. Note that every additional sensor comes
at its own costs such as increased weight and size of the
system, power consumption, requirements for infrastructure
and associated maintenance costs.

The work presents a foot-mounted system for indoor and
mixed indoor/outdoor pedestrian localization, where ultra low-
cost commercial inertial and magnetic sensors are fused using
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Unscented and Extended Kalman filters. The designed system
is able to provide a reliable position and orientation for a
reasonably long time which was before considered feasible
only when using more expensive IMUs. The performance
of the system is demonstrated for several representative in-
door/outdoor scenarios and is evaluated with respect to differ-
ent models and filter settings. Some of the algorithm’s intrinsic
accuracy issues are addressed by augmenting the system with
magnetic and barometric pressure sensors, a passive RFID tag
reader and the GPS for outdoor walking segments. Here RFID
was chosen as a low-cost alternative to reference positioning
based on Wi-Fi due to its flexibility, low-cost and ability to
handle potential power constraints such as blackouts during
emergency situations [3].

The remainder of the paper is structured as follows: section
II provides a brief discussion on several of the related ap-
proaches. Section III presents some mathematical details of the
developed scheme along with the fusion filter and dynamical
models. A general system concept and the associated hard-
ware/software are explained in Section IV with the results
provided in Section V. Section VI concludes the paper and
presents an outline for future work.

II. RELATED WORK

A variety of systems have been proposed to address the
problem of location determination of persons and objects
within indoor environments [4], [5]. While for robotics appli-
cations a fairly good performance can be achieved using ac-
celerometers, odometers and angular rate sensors, the approach
can not be applied directly for pedestrian localization. One of
the most popular solutions is to adopt a simple version of the
PDR approach, where the steps are detected by monitoring
the accelerometer’s output and the person’s position is moved
by the estimated step length in the direction obtained from
the magnetic compass and/or gyroscope. These approaches
have to be often tuned for a particular user and can still
fail for unusual scenarios such as crowded environments,
uphill/downhill walking etc., where the assumptions regarding
the walking pattern are violated.

Unfortunately, unaided PDR is sensitive to sensor imperfec-
tions and can be used for a very coarse localization only [6],
[7]. Methods with combined absolute and relative (inertial)
referencing are believed to be more effective in terms of cost
and performance with numerous approaches reported using
Ultra-Wide-Band (UWB) [8], [9], WLAN [10], RFID etc.
For some of the systems above severe constraints for larger
scale deployment do exist including high equipment costs,
calibration (e.g. fingerprinting for WLAN) and maintenance
efforts. By augmenting the absolute reference systems with
the inertial sensors and map information one can significantly
increase the distance between the positions where the absolute
referencing is mandatory [3], [10].

The simplest pedometer-based systems are counting steps
and the travelled distance is estimated from the knowledge of
an average step length [11]. Although an original pedometer
is not able to differentiate between varying types of gait, some

kinematic approximations can be adopted for online estimation
of an actual step length [12]. The empirical information in step
detection and length estimation could easily fail for users with
different gait patterns or if the user moves in any other way
than his/her normal walking pattern.

The presented work addresses the pedestrian indoor local-
ization using a different strategy, where the IMU and addi-
tional sensors are mounted on a foot. The approach employs
the assumptions regarding the human foot dynamics and is
able to limit the position estimation error to grow only linearly
in time. The presented method, commonly referred as the
’Zero Velocity Update’ (ZUPT), dramatically decreases the
position error by allowing the system to navigate in an open
loop for time periods shorter than 1 second (i.e., the typical
step duration during normal gait conditions), resetting the
estimated velocity when the stance phase of the step is detected
[13]. Note that the residual position error is not completely
eliminated and remains in general unbounded for an unaided
system [7]. The overall fusion concept becomes feasible as the
correlation information is introduced by the dynamical model
which corrects retrospectively the sensor imperfections.

The original technique of [13] is nowadays widely adopted
throughout the research community. Most of the approaches
reported so far [3], [4], [11], [14], [15] are actually using only
relatively expensive and well calibrated MEMS IMUs with
the price often exceeding 1000$ per unit. For those who adopt
truly custom and low-cost IMUs (e.g. [7]), the results of a pure
unaided inertial navigation are often poor even for a shorter
navigation time. The original framework of [13] was extended
in numerous recent works of other authors. For example, the
work [16] extended the framework with the GPS position
measurements, while a validation mechanism for magnetic
disturbance detection with cascaded estimation architecture
was suggested in [17], [18]. In the series of works of Jimenez
[19], [20] the technique was further improved with advanced
motion models and restricting the pedestrian to follow mainly
straight trajectories. The authors in [15] suggested combining
the shoe-mounted IMU with a high resolution, thin and
flexible biomechanical ground reaction sensor to improve the
robustness of the detection of zero-velocity phases. According
to the authors, the true zero velocity occurs as some point
around the midstance subphase after all rolling contact of
the foot with the ground has been reached, which is often
not properly detected by the schemes solely based on inertial
sensing, resulting in intrinsic zero-velocity bias negatively
affecting the performance of the overall system. A combination
of the approach with building information has been reported in
[3], while [14] fused the inertial information with the map to
constrain the heading and match the orientation of the building.
The latter was obtained after processing the original street
level image of the environment. The approach of Jimenez
was further extended with the information from Structure-
From-Motion (SFM) [21], where a decoupled EKF approach
was adopted. While one EKF was used within the original
INS module, an additional higher-level EKF was developed
to fuse the position estimates from INS and SFM. The work
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[7] augmented the classical EKF+ZUPT strategy with passive
RFID tags. Unfortunately, the RFID position information was
not incorporated in a statistically sound manner, but a simple
affine transform was used to rotate and scale the trajectory
between the current and previous RFID points.

III. METHODS

A. Recursive Bayesian Estimation and Kalman Filter

The pedestrian localization can be formulated as a state
estimation problem of the system [22]:

xk = f (xk−1, uk, wk) , (1)
zk = h (xk, εk) , (2)

where xk ∈ Rn is the state at time tk with the associated
measurement zk ∈ Rm, f (·) and h (·) are the nonlinear
system process and measurement functions respectively, wk

and εk correspond to the process and measurement noises
and uk stands for control input. Within the framework of
RBE [2] the estimation of the state xk at time tk is based
on all the measurements Zk = z0, . . . , zk up to that time
and is represented as a probability density function (pdf )
p(xk|z0, . . . , zk) to be calculated recursively using 2 steps:

Prediction The a priori probability p(x̃k) = p(xk|Zk−1) is
calculated from the last a posteriori probability p(xk−1|Zk−1)
using the process model p(xk|xk−1):

p(x̃k) =

∫
p(xk|xk−1)p(xk−1|Zk−1)dxk−1. (3)

Correction The a posteriori probability p(xk|Zk) is calculated
from the a priori probability using the measurement model
p(zk|xk) and the current measurement zk:

p(xk|Zk) =
p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
= η · p(zk|xk)p(x̃k). (4)

Various implementations of RBE algorithms differ in the way
the probabilities are represented and transformed in the process
and measurement models [2]. The ZUPT-based localization
problem is inherently nonlinear and accordingly one of the
nonlinear filters has to be adopted.

Within the EKF, the models are linearized through a first-
order Taylor series expansion of the process/measurement
models around the current state estimate. Although the orig-
inal nonlinear functions are used for the state transition and
measurement prediction, the covariances are approximated by
calculating the Jacobian matrices with respect to the current
state estimate (and/or noise if necessary). The general algo-
rithm structure is based on the Kalman filter equations. For
well-defined continuous transition models, where the functions
can be well approximated as linear during the sampling period,
the EKF performs reasonably well and is often considered as
de-facto standard for navigation applications. A more detailed
discussion on classical EKF can be found in [2]. Note that
the original ZUPT algorithm [13] as well as most of the other
works [18] is based on the EKF in error-state formulation.
Unlike the original work we use a full-state EKF formu-
lation. Fortunately, the final Jacobians are quite sparse and

the calculations within a single filter cycle are considerably
less demanding compared to the processing required by the
Unscented Kalman filter (UKF).

As an alternative to EKF-based filter, we demonstrate the
implementation using an UKF, where the probability distri-
bution is approximated by a set of so-called σ-points in the
state space, deterministically selected to preserve the Gaussian
properties of the distribution under nonlinear transformations.
The points are propagated through the original nonlinear
process and measurement equations and no Jacobians have
to be calculated. Although the filter is believed to have better
statistical properties [23], [24], it is more computationally de-
manding compared to EKF. Some methods exist for optimizing
the UKF with respect to computational demand, numerical
stability etc., such as its square root versions or adoption of
Spherical Simplex σ-points [25].

Below we briefly describe the process model which is a
straightforward implementation of the classical INS strapdown
integration, and a number of measurement models incorporat-
ing various sensors and relevant motion constraints. The basic
idea behind the overall framework is to integrate the inertial
sensors with the rate of their availability (>100Hz) using
the INS mechanization model and perform the measurement
update whenever an additional information in the form of
GPS/RFID location or stance still detection is available.

B. The Models
A sketch of the process model can be seen in Fig. 1, where

the prediction step is based on a simplified INS mechanization
with the state of the system given as:

xk = [qk, vk, pk, bω,k, ba,k]
T
, (5)

where qk is the orientation quaternion, vk and pk are the
velocity and the position in the navigation frame and bω,k and
ba,k are the gyroscope and accelerometer offsets. The process
model of the quaternion is a discrete integration of the input
angular rate:

qk =
1

2

∫ ∆t

0

Ω (ω) qk−1dt, with ∆t = tk − tk−1, (6)

where Ω (ω) is a skew-symmetric matrix of input angular
rates. The formulation of the angular rate as a control input
allows us to preserve the highly dynamical motion of the foot
without developing any explicit models. The angular rate in
the expression above is:

ωk = ω̃k − bω,k−1 + wω,k, (7)

where wω,k ∼ N (0, Qω,k) is the gyroscope noise and ω̃k

corresponds to the actual output of the gyroscope. The accel-
eration measurement can be also treated as a control input:

ak = ãk − ba,k−1 + wa,k, (8)

where wa,k ∼ N (0, Qa,k). The process models for the
gyroscope and accelerometer biases are assumed to be:

bω,k = bω,k−1 + wbω,k, (9)
ba,k = ba,k−1 + wba,k, (10)
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Figure 1. A sketch of the process model for prediction step in the UKF/EKF.
Some unit delay blocks are omitted for simplicity.

with wbω,k ∼ N (0, Qbω,k) and wba,k
∼ N (0, Qba,k). The

measured acceleration can be transformed to the navigation
frame using:

ak,nav = qkakq
−1
k − g, (11)

with g ≈
[

0 0 9.81
]T

m/s2. Then the velocity and the
position are obtained by trapezoidal integration. The process as
depicted in Fig. 1 does not consider the system initialization.
In practice an extra noise can be added to the position estimate
in order to take into account the unmodeled errors from the
inertial navigation as well as failures in the stance phase
detector.

We distinguish two different measurement model groups:
one is called ’Zero Velocity Updates’ and contains all up-
dates which utilize the inertial sensors and the fact, that the
human foot undergoes a still phase on a regular basis. The
second group uses additional sensors such as magnetometers,
barometers, an RFID reader and a GPS receiver. Under normal
conditions, human walking follows a pattern similar to the one
depicted in Fig. 2 (top). During the stance phase we assume
that the foot is not moving and, therefore, the velocity of
the foot has to be approximately zero. Similarly, the angular
rate should be also close to zero for the no-motion conditions
and the measured acceleration vector should contain only the
terms due to gravity and the sensor biases. Under ’no motion’
condition the following measurement models are adopted:

Zero Velocity Update (ZUPT): this is a pseudo measure-
ment where we assume the velocity vk to be zero when the
associated conditions are fulfilled:

[0 0 0]
T

= vk + εZUPT,k, (12)

where the measurement noise εZUPT,k ∼ N (0, RZUPT )
stands mainly for erroneous triggering within the detection
mechanism.

Zero Angular Rate Update (ZARU): under ’no motion’

Figure 3. Block diagram of the filter for position estimation using ZUPT.

condition the measured angular rate is due to sensor bias only:

ω̃k = bω,k + εZARU,k, (13)

with εZARU,k ∼ N (0, RZARU ).
Gravity (G): we employ the acceleration measurement to

compensate the pitch and roll under the conditions that no sig-
nificant linear acceleration is present and the observations ãk
are solely due to measured gravity vector g and accelerometer
bias:

ãk = q−1
k gqk + ba,k−1 + εG,k, (14)

where εG,k ∼ N (0, RG).
Different strategies have been proposed in the literature

[13], [14], [19] for stance still detection (SSD). Although the
pure inertial detection mechanisms are not completely reliable
[15], we have found experimentally that a combination of
three different detectors provides the best performance. Fig.
2 demonstrates the accelerometer and the gyroscope signals
during a single step and three different detection conditions.
The detection of the stance phase is implemented according
to [13], where after one of the gyroscope or accelerometer
signals have entered the predefined limits (the magnitude of
the gyroscope signal below 0.1 rad/s, and the acceleration in
the range from 9.6 to 10.0 m/s2), a delay of 30 ms is imposed
before the ZUPT or ZARU conditions are enabled. The values
must stay within the ranges for the associated condition to be
valid. If the delay requirement is satisfied, new thresholds are
computed at each iteration using the current threshold and
the actual sensor output. The detector is disabled when the
signal values start to grow too fast as the foot is expected
to enter the swing phase. Within our implementation the
ZUPT and ZARU models are enabled and disabled separately,
and when both conditions are simultaneously satisfied, the G
measurement model is added. Fig. 3 shows a block diagram for
the generic filtering approach. The process model is performed
continuously using the INS-based model, while the detector
checks if one of the still stance condition is satisfied. If so, the
predicted state estimate x̂−k and corresponding covariance P−

k

are corrected using one of the measurements discussed above.
However, if the detector fails to confirm the still condition, no
correction is performed and the predicted values are considered
as an input for the next filter cycle. Measurements from
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Figure 2. A sketch of the stance phases for human bipedal motion (top) and an example of stance still detection. The velocity plot also shows the drift of
the estimated velocity if not corrected by the ZUPT mechanism.

additional sensors can be easily incorporated to the filter as
explained below:

Magnetic Field Measurement: the magnetic field measure-
ment model resembles those of the acceleration:

m̃k = q−1
k mqk + εM,k, (15)

where m is the Earth’s magnetic field at the given location and
εM,k ∼ N (0, RM ). The magnetic field measurements can be
performed continuously and are not conditioned on the foot
motion phase.

Barometric Pressure Measurements: the following model
for height measurement is adopted:

p̃z,k =
T0

L

((
Sk

S0

)−LR
G

− 1

)
+ εh,k, (16)

where Sk is the barometric pressure. The model represents
a simplified expression for altitude in terms of atmospheric
pressure with the lapse rate L = −6.5 × 10−3 K/m and T0

and S0 for the temperature and base pressure at zero altitude,
R - the gas constant for air and G for the gravity acceleration
value [26]. For our scenarios with small vertical displacement
we assume a linear additive noise model εh,k ∼ N (0, Rh)
for the vertical position. A higher noise can be assumed for
the height measurements due to environmental impact such as
people moving around or opening/closing doors.

RFID: for the scenario with passive RFID tags we adopt a

simple position measurement model:

p̃k = pk + εRF,k. (17)

with εRF,k ∼ N (0, RRF ). Here the additive noise component
represents the our ability to detect the tag when passing close
to it and is experimentally chosen close to the RFID detection
distance.

GPS: a similar position measurement model is assumed for
segments with GPS available:

p̃k = pk + εGPS,k. (18)

with the position measurement uncertainty εGPS,k ∼
N (0, RGPS). Clearly, the GPS position noise can hardly
satisfy the additive Gaussian white noise assumption of the
KF and more elaborated models are often assumed for higher
performance systems. For our scenario we impose a validation
threshold on the GDOP value for the measurement to be ac-
cepted within the correction step. Unfortunately, the multipath
and reflection errors are still not properly handled and can
strongly affect the performance of the overall system when
approaching the buildings.

IV. HARDWARE AND SYSTEM CONCEPT

The purpose of the presented work is to demonstrate the
feasibility of the approach using extremely low-cost off-the-
shelf hardware with a general system concept to be found
in Fig. 4. The system consists of a sensor unit placed on
the foot with the sensor data to be continuously transmitted
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Figure 4. A general system concept.

Figure 5. Custom IMU mounted on a foot with RFID reader antenna and
passive tag beneath the foot.

to a Tablet PC via a Bluetooth interface. As an affordable
computing platform we have chosen the Tablet PC running
Android OS. The platform is also expected to have access
to the map and environment information as well as GNSS
and WiFi for absolute position referencing when applicable.
The pure inertial sensing does not provide an initial position.
This information has to be known in advance via other sensing
mechanisms (GPS, WiFi) or explicitly set by the user via GUI.
Note that the presented framework is rather general and will
clearly perform better with higher quality and better calibrated
sensors.

The foot-mounted hardware follows a modular approach
where the core of the developed system consists of two main
boards: the sensor unit and a power unit with the battery
attached (see Fig. 5). The sensor unit contains the TI MSP430
MCU, responsible for sensor readout, data preprocessing and
communication, a 3-axis accelerometer, a 3-axis gyroscope, a
3-axis magnetometer and a barometric pressure sensor. The
inertial sensors are sampled at 100Hz, the magnetometer and
the barometer are sampled at 75Hz and 2Hz respectively.

The sensor unit can also contain an RFID reader (13.56MHz
chip carrier frequency, polling rate ≈ 50ms), while several

Figure 6. The indoor localization is visualized using an indoor map onto
which the current position (marked by a blue square) and a part of the
trajectory is plotted. Start position is marked as a red square.

passive RFID tags are distributed over the floor at known
positions. When the user passes by a tag, its unique ID is re-
trieved and mapped to a particular location in the environment,
correcting the accumulated position drift. The main advantage
of the passive RFID tags is that they are extremely cheap and
quick to install. For GPS measurements we used the built-
in GPS module (reported to be a Broadcom BCM4751) in
the Samsung Galaxy Tab (GT-P1010) running Android 2.2.1.
A basic calibration of the magnetic field sensor is performed
similarly to [12] in order to remove the influence of the setup.
Similar calibration was adopted for accelerometer, while the
default datasheet calibration was used for the gyroscope with
a linear fit for the bias temperature dependence.

The filter algorithms as well as the graphical user interface
were implemented in Java using the Android SDK [27]. After
the startup the application attempts to connect via Bluetooth
to the foot-mounted unit. On a successful connection three
threads are created: one for reading Bluetooth data, one for the
execution of the KF algorithm and a third one for updating the
GUI and associated visualization. The communication between
the threads is accomplished using handlers - which allows
sending and process messages associated with a thread’s Mes-
sageQueue [27]. For future platforms with multiple cores (e.g.
TegraTM 3 from nVidia) the approach gives more processing
power to the algorithm and ensures that no Bluetooth packets
are lost along with a smooth and responsive GUI. Without the
GPS, the correct initial position, orientation and scaling have to
be provided by the user in a preference window. The length of
the shown trajectory is also user adjustable. In the screenshot
in Fig. 6 only the indoor localization scenario is depicted.
Within our on-going work we are trying to combine the
visualization of indoor and outdoor navigation in a consistent
manner. The necessary transition between the lower resolution
outdoor map and a more detailed indoor map can be dealt, for
example, by using an appealing zoom and rotation animation.
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Figure 7. Pure inertial localization using the XSens MTi and HSG-IMIT
custom inertial unit. Black square marks the start of walking while the pink
dashed line corresponds to the true trajectory (duration appr. 5 minutes).

V. RESULTS AND DISCUSSION

The filter is initialized with the correct pitch and roll
angles (quaternion equivalent) from the accelerometer and
the gyroscope bias estimates obtained from the first several
seconds while the user being still. The control noise for the
accelerometer was set to σa = 0.02m/s2 and for the gyroscope
σω = 3 mrad/s. The G measurement model noise was set
to σG = 0.05 m/s2 due to additional uncertainty within the
Stance Still Detector (SSD). The process noise for gyroscope
bias was set to σbω = 3 · 10−6 rad/s for Fs = 100Hz
and accelerometer bias drift was modelled with σba = 10−5

m/s2. The measurement models were implemented assuming
σZUPT = 2 ·10−2 m/s, σZARU = 0.02 rad/s. Both ZUPT and
ZARU are pseudo measurements with the noises essentially
representing the quality of the associated ZUPT and ZARU
detectors.

IMU type Fig. 7 presents the results of with inertial-only
approach for both XSens MTi (calibrated sensor data only)
and our custom IMU. Although the MTi unit (price appr.
1500$) outperforms our custom IMU, the difference is not
dramatic and even a low-cost system is able to provide a
meaningful trajectory over a reasonably long period of time,
while the direct INS mechanization fails to deliver a reliable
position due to fast accumulating errors. The mismatch in
the vertical position was between 1 and 2 meters for both
systems, although the custom IMU had demonstrated more
rugged vertical position estimation and several vertical jumps
which could be also attributed to failures in SSD mechanism.
The vertical accuracy of our IMU is enough to distinguish
separate stairs (actually a couple of stairs as long as the unit
is mounted on a single shoe and a single swing usually covers
2 stairs) as shown in Fig. 8.

EKF - UKF Fig. 9 compares 2 otherwise identical inertial-

Figure 8. Vertical displacement scenario with stairs using a custom IMU.

Figure 9. UKF and UKF based implementation of the inertial algorithm
version. The pink dashed line corresponds to the true walking path.

only algorithms based on EKF and UKF. Although the esti-
mated trajectories are slightly different, both filters are able
to provide a fairly good performance. The slight difference
between the filters can be attributed to the fact that the
estimated sensor biases are used as the inputs for SSD
mechanism. Therefore, even slight differences in estimated
biases are amplified via their influence on the SSD mechanism
and associated trigger for correction step. For well-calibrated
sensors with the SSD used without sensor biases, the differ-
ences in accuracy between UKF and EKF are believed to
be considerably smaller as have to be caused solely by the
statistical properties of the corresponding filters. The EKF-
based scheme had shown up to 8x improvement in speed
compared to our original UKF implementation on the same
data sets when implemented in Java.
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Figure 10. Comparison of the filter performance with and without magnetic
field information. The pink dashed line corresponds to the true walking path.

Accelerometer bias The presence of the accelerometer bias
in the system state slightly improves the position estimation
when compared to a filter without the sensor offset estimation.
However, this depends on the quality of the sensor and comes
at a price of three extra states within the filter. Although
the true sensor characteristics are often employed for noise
covariance estimation, the situation is more delicate for the
ZUPT/ZARU/G pseudo measurements, where the entire SSD
mechanism can be considered as the sensor per se. Some
extra tuning efforts required for these models can be also
explained by the violation of the Gaussian additive noise
assumption caused by heuristics in SSD mechanism. The
issue is consistent with the results of other authors (e.g. see
discussion in [21]).

Magnetometer Although the absolute heading information
can be obtained by measuring the Earth’s magnetic field, the
measurements are usually unreliable for indoor environments
due to correlation in errors caused by the furniture and infras-
tructure. These correlated errors are relatively large compared
to the sensor intrinsic noise, usually are non-Gaussian and
therefore a better compass with lower noise values will not
result in improvement in the position accuracy. The issue is
usually solved by assuming a larger measurement noise in
order to allocate the possible disturbances and/or employing a
heuristic detector conditioned on the measured field amplitude
[18]. For outdoor scenarios with minor magnetic disturbances
the situation is often better as one can see in Fig. 10.

G measurement From the results presented above it
is not completely clear whether such a fairly complex
ZUPT+ZARU+G SSD mechanism is necessary or a simplified
approach can be used. Clearly, the ZUPT measurement model
is crucial in order to limit the fast growing position error

due to double integration of the accelerometer offset. Our
experimental findings have confirmed that addition of the G
measurement model strongly improves the performance as
both pitch and roll angles become observable. The influence of
the ZARU model was rather minor which could be attributed
to the stability of the gyroscope bias during the short walk
and good indirect observability of the bias from the G model.

Barometer A barometric pressure sensor can be used to
eliminate the vertical position drift of a pure inertial system
and, with some modifications, to determine a correct floor in
a multi-storey building [4]. The pressure measurements are
assumed to be valid only during the ZUPT+ZARU+G condi-
tion in order to minimize the disturbances induced by the air
circulation while the foot is moving. The localization results
for a multi-floor setup with an elevator/stairs segment are
presented in Fig 11. Note that an elevator scenario was already
addressed in [26] using both accelerometer and barometer,
although no explicit localizaiton results had been provided.
A pure inertial version fails to detect the elevator part, while
the version with the barometer (σh = 0.2m) corrects the
height estimation. A higher barometer noise is probably caused
by the air circulation during the motion, opening/closing of
the elevator doors, ventilation system etc. A faster height
correction can be achieved with smaller σh values, while a
higher uncertainty assigned to the barometer measurements
increases a delay in height correction similar as shown for
part A in Fig. 12, where the filter was too late to correct
the vertical offset before the person left the elevator and
returned to the starting point. Note that accuracy of our low-
cost barometer was not sufficient to resolve the height of
single stairs, although this was shown to be possible with
inertial sensing as confirmed by Fig. 8. A better performance
of barometer reported in [11] can be also attributed to the fact
that MTi-G unit has a housing and influence of air circulation
during the motion is reduced.

RFID By augmenting the system with an RFID reader one
can address the issues of unbounded X-Y position errors (Fig.
13 and 14). The position of the detected passive RFID tags
is uniquely defined via its ID and a direct position correction
(with σRF = 0.1m) can be applied if the user steps on or
close to the RFID tag. The performance of such a scheme
strongly depends on the number of RFID tags encountered
during the walking and one should intend to put the tags
on commonly traversed locations. Note that not all the tags
shown in Fig. 13 and 14 were detected and even few tags
encountered during the path are able to significantly improve
the quality of the estimated trajectory. A combination of an
IMU and RFID is a perfect example of complementary sensing
modalities where short term tracking between RFID detection
events is supported by accurate absolute position information
from the RFID tags.

GPS For a mixed indoor/outdoor scenario one of the
simplest solutions is to augment the inertial system with the
GPS position measurements. The performance of such a filter
is shown in Fig. 15 and compared to the one of a pure inertial
filter. The received GDOP (i.e. the satellite-receiver geometry)
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Figure 11. Multi-storey localization scenario with pure inertial ZUPT with
(red line) and without (blue line) barometric pressure sensor. Perspective
view for estimated path (vertical scale artificially increased to improve the
separation between floors). Total walking duration appr. 3 minutes. Black
square: start of the path; blue and red squares: end points for the associated
filters.

Figure 12. Height estimation results for multi-floor scenario and barometric
pressure data.

value is used as indicator of the measurement quality with a
threshold value of 5 meters set for the measurement to be
considered eligible. While the outdoor trajectory segment is
corrected by the GPS measurements, the indoor segment also
benefits from previous GPS measurement due to decreased
heading drift and smaller position mismatch when entering
the building. Note that the GPS measurements were assumed
slightly worse as they truly are to avoid jumpy corrections for
outdoor segments.

VI. CONCLUDING REMARKS AND OUTLOOK

Within the work we have experimentally investigated a
performance of a low-cost foot-mounted inertial unit for mixed
indoor/outdoor scenarios and continuous localization over a
longer period of time. A number of additional sensors such as
magnetometers, barometric pressure sensor, RFID tag reader

Figure 13. System performance with RFID reader for multi-floor scenario.
Red squares mark the position of RFIDs while the black square denotes the
start of the walking. The vertical scale is artificially increased for improved
visual separation between the floors.

Figure 14. Pure inertial localization (top) and approach with RFID measure-
ments (bottom) for a single floor scenario. Blue squares mark the positions
of RFID tags while the red square denotes the start of the walking path.

and GPS have been attached in order to address the drawbacks
of a pure inertial approach and to increase the robustness of
the complete system.

As the system is intended to operate on Android OS based
smartphones and Tablet PCs, one expects further improvement
in performance if Wi-Fi RSSI measurements are added to
the system and available map information is integrated to the
filter. Here the map constraints can be incorporated either via
constrained versions of KF or by adopting a hybrid estimation
strategy, where a modification of an UKF/EKF or is adopted
as a proposal density function within the Particle Filter (PF),
where marginalized PF can be an alternative solution. The ap-
proach would allow to represent multiple position hypothesis
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Figure 15. Pure inertial localization with and without GPS measurements.
The pink dashed line corresponds to the true walking path.

which can arise due to symmetry of the maps and still keep
our filter computationally tractable. Some further work is also
planned on better models for the GPS noise and significant
improvement in computational performance is expected with
rewriting the UKF/EKF with C/C++ using Android Native
Development Kit (NDK).
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