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Abstract 

Device heterogeneity significantly degrades the 

localization performance of fingerprinting-based 

localization, especially in the crowdsourcing-based 

positioning system. Although manual calibration can 

reduce positional error, the adjustment overhead is 

extremely heavy and to maintain ever-increasing 

device types is overly laborious. In this paper, we 

propose a novel Device-Clustering algorithm to 

operate the positioning system based on macro 

Device-Cluster (DC) rather than natural device. In 

this way, the system maintains less device types and 

the localization accuracy is improved obviously. The 

experimental result of different combination 

indicates the optimal operating flow is to combine 

DC and kernel density estimator when the tracking 

device is known and add the linear transformation 

phase when device is unknown. 
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1 Introduction 

The importance of space location has made 

positioning system an integral part of modern mobile 

applications. User’s location can enhance a variety of 

LBS applications, including calendars, reminders, 

navigation assistants, and communication tools [1]. 

Moreover, with the remarkable advancement of 

assorted need in wide-area environment, 

metropolitan-scale location-based services (LBS) 

have found their ways into people's daily life. 

However, conventional satellite-based positioning, 

such as the GPS, fails in both indoor scenes and 

complex urban environment. Compared with other 

Radio Frequency (RF) techniques, Wi-Fi-based 

localization benefits from the widespread 

deployment of APs and stable signal strength. 

Therefore, fingerprint-based Wi-Fi Location Systems 

has become a research hotspot in the world for its 

high accuracy and low cost of computation [2,3].  

Fingerprint-based localization is simple apply. 

During the calibration phase, system keeps a radio 

map containing a location flag and a set of scans, or a 

fingerprint collected by training device. And during 

the tracking phase, to obtain the corresponding 

location flag, tracking device will find the closest 

match in the fingerprint database with its observing 

fingerprint [4]. Nevertheless, the accuracy of 

fingerprinting-based localization greatly depends on 

the fingerprint density and sampling coverage. Thus 

to build an abounded fingerprint database, traditional 

expert sampling is time-consuming, expensive and 

intrusive [5]. As an alternative, a Wikipedia-style 

crowdsourcing model [6] has been introduced to 

encourage users to contribute fingerprints unnoticed 

when tagging places. 

Although crowdsourcing model could effectively 

reduce the sampling overhead, a new issue comes 

into being -- Device Heterogeneity. General user's 

involvement brings assorted WLAN-enabled mobile 

devices, which results in diverse Received Signal 

Strength (RSS). Hence when training device is 

different from the tracking device in positioning 

phase, such varying RSS can remarkably degrade 

positional accuracy. Besides, this device 

heterogeneity problem is not only caused by distinct 

Wi-Fi chipsets, but also related with distinctive 

driver properties, various operating system, 

complicated encapsulation materials and so forth [7]. 

Therefore, to maintain different Wi-Fi training and 

tracking devices is overly laborious and impractical 

for real-world deployment, especially in calibration 

phase before positioning. 

This paper proposes a novel Device-Clustering 

algorithm. First in the training phase, distinct devices 

sharing the same RSS pattern are classed into same 

macro Device-Cluster (DC).  Then in the tracking 

phase, all the operations are based on the DC. The 

known devices can directly exploit the fingerprints 

from corresponding DCs, while unknown devices 

requires being linearly transferred into available RSS 

pattern. Finally through user's feedback, new 

tracking fingerprint can be absorbed into database to 

augment radio map. Experiments prove the validity 

and practicality of this new positioning framework. 

2 Related work 

There is much research work done in solving device 

heterogeneity while employing crowdsourcing model. 

And these researches usually fall into three main 

categories. 



 

The first strategy is to add a brief calibration 

period before location estimation. Haeberlen et al. 

has acknowledged the pairwise linear transformation 

between diverse devices gives good results in most 

cases [8]. Afterward, experiments carry out the major 

characteristics of device heterogeneity lie not only in 

the linear difference, but also in the signal strength 

distributions [5]. And then it's proved linear 

transformation works well only with uniformed 

combination of hardware and software [9]. Thus 

linear calibration alone does not solve the problem 

and assorted devices make the manual calibration 

unpractical. 

Instead of extra adjustment, the second method is a 

calibration-free localization. M. B. Kjaergaard 

presents hyperbolic location fingerprinting, which 

replaces the original fingerprint with the ratio of 

signal strength between pairs of APs [10,11]. Then in 

[12], the signal strength differences between pairs of 

APs are introduced to reduce the overhead of 

adjustment.  Both the two methods are based on the 

hypothesis that although devices are different, their 

reflections to different APs should be the same 

comparing with themselves. But such hypothesis 

usually fails in complex urban environment because 

of multipath effect and noises. 

The third approach is based on the transfer 

learning algorithm. According to [13], the problem of 

mapping RSS signal patterns over devices could be 

treated as multiple learning tasks. By transferring 

fingerprint values into a latent feature space, the RSS 

pattern tends to be uniformed so that the device 

diversity could be solved. Likewise, in [14] a 

corresponding relationship is learnt from both 

tracking devices and training devices in a low-

dimensional space with Manifold Alignment. Then 

the relationship is used to transfer knowledge from 

train domain to help with the classification in 

tracking domain. However, both of these solutions 

are limited in theoretical research presently, and the 

complexity of algorithm obstructs their promotion 

and deployment. 

Although clustering-based solution has been 

exploited in solving the spatial diversity problem 

[15], its application in device diversity is still not 

developed. Given ample device types offered by 

crowdsourcing-based training and laborious sampling 

in total space to each device, in this paper, we plan to 

replace single device with macro DC. By comparing 

their similarity in fingerprints, we combine the 

strength of both hierarchical clustering and density-

based clustering to class distinct devices into DC, so 

that devices in same cluster could share fingerprints. 

And the mix of linear transformation and Expectation 

Maximization (EM) is executed to unknown tracking 

devices to offer approximate positioning result.  

3 Algorithm 

Our algorithm framework is shown in Figure 1. This 

flow can be divided into three parts.    

Bottom-Up Clustering 

+ DBSCAN

Similarity

Enough?

Training 

Fingerprint

Device-Cluster

No

Yes

Positioning

Engine

Linerar Transfer

+ EM

Observing 

Fingerprint

Position

Training

Phase

Calibration

Phase

Tracking

Phase

 

Fig. 1. Algorithm Framework 

In the training phase system maintains a DC 

database rather than single device. Whenever an 

observe fingerprint is input in the calibration phase, 

system will decide whether this device belongs to 

one of the DCs. If the tacking device is totally new, 

EM algorithm will be applied to linearly transfer the 

observe fingerprint. Finally in the tracking phase, the 

estimated position will be worked out with certain 

positioning algorithm. 

3.1 Training Phase 

A. Fingerprint similarity measurement 

When RSS fingerprints of a device are collected, 

they not only provide information at these points, but 

also imply the characters of specific type of devices. 

Thus by comparing these fingerprints with some 

measurements, similarities between pairwise devices 

can be obtained.  

Here we choose the Pearson Correlation 

Coefficient [16] to measure similarities in 

fingerprints between pair devices. 
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p , q  represent fingerprints of two devices in radio 

map, and d  is their dimension, or the number of APs. 

The Pearson correlation ratio r represents the linear 

dependency between two fingerprint vectors. r  

ranges from 0 to 1, where 0 indicates the least 

similarity while 1 indicates the greatest similarity.   

B. Device similarity measurement 



 

After defining the fingerprint similarity measurement 

between fingerprints, the device similarity 

measurement is also deduced.  

Here we exploit the DBSCAN algorithm [17]. 

DBSCAN is a density-based clustering algorithm 

with two parameters:  (radius of cluster) and 

minPts (minimum points of cluster). It starts with an 

arbitrary core point, and then absorbs all the neighbor 

points within distance  as the member of the cluster 

based on the distance measure. When the number of 

neighbors reaches the minimum requirement --

minPts , a cluster is formed. 

Assuming dRF is a RSS fingerprint database, a 

dist matrix can be calculated as follows, in which 

fingerprint similarity measurement is treated as the 

distance measure. 
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n is the total number of the fingerprint in F . Then 

we choose the fingerprint p , who owns the greatest 

similarity values, as the starting point. Thus in the d-

dimensional hypersphere, we obtain an initial the  -

neighborhood N  with the radius  , minimum 

points minPts  and core point p . 
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In the  -neighborhood N , except the core point p , 

any fingerprint q  is density-reachable to p  under 

the condition ( , )minPts .  

Therefore, if iF , jF  are RSS fingerprint databases 

of two distinct devices, by mixing the two databases 

we can get the )( |i j| F F| | -dimensional 

dist matrix. 
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i| F | , |jF| are number of fingerprints in iF  

and jF .  defines the radius of new cluster, while 

 is the slack variable in the range of 0 ~ 1 . The 

greater the  is, the harder iF  and jF could be 

classed as one cluster. 

C. Hierarchical clustering framework 

To effectively class diverse mobile devices, we 

introduce the hierarchical clustering framework [18] 

which is shown in Figure 2. 

In this framework, every natural device will be 

compared with the rest 1n  devices under the 

device similarity measurement, and the successful 

mixed cluster will enter the next level. After k -

level's calculation, n  devices will be classified into 

m  DCs. 
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Fig. 2. Bottom-Up Clustering 

3.2 Calibration Phase 

In the calibration phase, whenever a new observing 

fingerprint enters, system will decide whether the 

tracking device has already been trained. If the 

tracking device is known, observing fingerprint will 

simply advance into positioning phase. But if the 

device is totally unknown, a calibration is necessary. 

If trainF  and trackF  are fingerprint databases each 

from training devices and unknown tracking devices, 

then there should be a pair coefficient ( , )a b which 

satisfies tracka btrain   F F [5,7,9]. In this 

paper, Expectation Maximization algorithm (EM) is 

employed to refine the linear parameter over and 

over by repeatedly computing expectation and 

maximization, until the fluctuation of linear transfer 

convergent [8]. In this way, the fingerprints pattern 

from tracking devices is transformed to training 

fingerprint pattern. 

In the parameter-learning process, 0f  indicates a 

DC p 's training fingerprint database, ( , )a b   

denotes the linear coefficients and fqt  represents the 

tracking device q ’s RSS readings at time t . EM starts 

with an initial guess of the parameters 0 0( , )a b and an 

initial observing fingerprint
0

fq . Then it seeks to 

find the optimal linear coefficient by iteratively 

applying the following two steps: 



 

E-step: Treat t as a constant, then work out the 

( 1)q t
f


with transformation function ( , )T ft qt until 

the expected log-likelihood of the following formula 

is greatest: 

0
{ ( , ) | }SIM dist f f f fqt p p   (5) 

M-step: Treat ( 1)fq t as a constant, find 1t   to 

satisfy the greatest ( , )E ft qt . 

The optimization problem is as follows: 
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When the fluctuation of linear transformation 

function stays within a fixed range, for example 0~1, 

we deem the function convergent and the final linear 

coefficients ( , )a b  could be used to map observing 

fingerprints. 

3.3 Tracking Phase 

Tracking phase is the final positioning phase, in 

which the transformed observing fingerprint and 

corresponding DC serve as the input to the 

positioning algorithm. Here we introduce the 

Bayesian localization framework [19], which is very 

suitable for crowdsourcing-based localization for its 

simplicity and high accuracy. 

Bayesian localization method computes the 

posterior probabilities over locations to find the most 

possible position. Given an observing fingerprint o  

and a random location nl L
k
  where L  indicates a 

set of n  locations, the posterior probability that o  

belongs to l is shown by the Bayes’ rule: 
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( | )P l o
k

indicates the prior possibility of the occur 

of observing fingerprint. ( )P l
k

 is usually set as the 

uniform distribution so in practical use people often 

ignore it. Therefore the estimated location le  is the 

one obtaining the maximum value of the posterior 

probability. 

argmax ( | )l P o le klk
    (8) 

Supposing each 
1 2( , ,..., )mo v v v  and M is the 

index of m APs, then the ( | )P o l
k

 in Equation 8 

becomes:  
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The 
|

P
v L
i

 here is often modeled as some kind of 

distribution. In this paper we choose two kinds of 

distributions: Gaussian distribution (maximum-

likelihood parameter estimator) [20] and a kernel 

density distribution (Parzen window estimator) [21].   

If in location l
k

, there are totally n  training 

fingerprints in one DC and each fingerprint scans m  

APs, we denote ( , ,.., )
1 2
s s sni

T  as the RSS set of 

all the fingerprint value in AP i . 

If 
i

T  is treated as Gaussian distribution, then 

the probability function of v
i

is as follows: 
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where  and  are mean value and variance of 
i

T . 

Likewise, if 
i

T is treated as a kernel density 

distribution, then the probability density function is 

as follows: 

1
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where h  is the kernel width, and ( )K  is a kernel 

function.  In this paper, we choose the Gaussian 

kernel as the kernel function. 

4 Experiment 

4.1 System Setup 

In order to evaluate the performance of our Device-

Clustering algorithm, we deploy a simulation 

environment on the 7th floor of Institute of 

Computing Technology (ICT) in the Chinese 

Academy of Sciences. The sampling and positioning 

area is shown in Figure 3.  This area covers 14 

stations as is shown in figure and the red points 

shown in Figure 3 represent the sampling locations.  

We employ eight types of mobile devices, which 

are shown in Table 1. We carry each cellphone to 

these red points for 2 minutes to collect RSS data and 

corresponding location flags. Finally we choose 100 

samples for every mobile device in each grid. 
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Fig. 3. Sampling area on 7
th

 floor of ICT 

Table 1 Devices used for data collection 

Device Platform Wi-Fi Module OS 

1 
HTC Magic 

G2 

Texas Instruments 

WL1251B 

Android 

1.5 

2 HTC G11 
Broadcom 

BCM4329 

Android 

2.3.3 

3 HTC G14 
AVAGO  

ACPM-7868 

Android 

2.3.4 

4 
Samsung 

Galaxy S 

Samsung  

SWB-B23 

Android 

4.0 

5 
Samsung 

Nexus S 

Broadcom 

BCM4330 

Android 

4.0 

6 
HTC 

Desire z 

Broadcom 

BCM4329 

Android 

2.3.7 

7 M1 MIUI 
AzureWave  

AW-NH6 11 

Android  

2.3.5 

8 
Huawei 

U8860 
Unknown 

Android 

4.0 

4.2 Performance Evaluation 

A. Clustering Measurement Analysis 

As mentioned above, argument   and minPts decide 

the device similarity measurement, but in practical 

use of DBSCAN people care much more of the 

radius of new cluster rather than minimum points in 

cluster, because the concept of reachability density 

helps find the best minPts  in operation. Thus to find 

the optimal clustering measure, we compare the trend 

of sampling cost and localization error as the 

argument  's factor  changes. The situation is 

shown in Figure 4. 

Here the sampling cost is calculated with the 

formula: T lmn , where l denotes sampling 

locations, m indicates the corresponding number of 

DC when   changes and n represents the sampling 

number every device needs in each location. The 

performances of different clustering result are 

denoted as error distance, which is calculated by the 

Euclidean distance between a predicted location and 

true location.  

It's clear from Figure 4 that as becomes greater, 

localization error rises correspondingly while the 

sampling cost decreases. When 0.1  , each device 

is self-styled to be a cluster, so that the sampling 

overhead every device assumes is overly laborious 

despite the best accuracy. And when 1  , it means 

all the fingerprints are mixed together to become a 

cluster, which not solves the device heterogeneity 

problem. 

 

Fig. 4. Localization error vs. clustering number  

Therefore, the key issue is to find the best balance 

between sampling cost and localization error. And in 

our situation, the joint point in Figure 4 shows the 

optimal   where all the devices are divided into 

four categories and the corresponding similarities 

between pairwise devices are shown in Table 2. The 

clustering result is listed in Table 3. 

Table 2 Similarities between devices  

Device 1 2 3 4 5 6 7 8 

1 1 0.82 0.82 0.56 0.57 0.80 0.84 0.69 

2 0.82 1 0.78 0.55 0.57 0.82 0.81 0.72 

3 0.82 0.78 1 0.53 0.57 0.80 0.84 0.70 

4 0.56 0.55 0.53 1 0.33 0.51 0.72 0.50 

5 0.57 0.57 0.57 0.33 1 0.47 0.69 0.39 

6 0.80 0.82 0.80 0.51 0.47 1 0.76 0.48 

7 0.84 0.81 0.84 0.72 0.69 0.76 1 0.69 

8 0.69 0.72 0.70 0.50 0.39 0.48 0.69 1 

Table 3 Clustering result 

Device 1 2 3 4 5 6 7 8 

DC 1 1 1 1 2 1 3 4 

B. Phase Combination Analysis 

To test the performance of our Device-Clustering 

algorithm over diverse devices, we divide the 

tracking devices into two categories: known devices 

and unknown devices. We also design different 

algorithm combination by mixing different phases, to 

verify the effect of clustering-based method, linear 

transformation and Kernel density-estimation. Table 

4 shows the abbreviation of different phases. 



 

Table 4 Terms of each phase 

Abbreviation Description 

C Clustering-based method on DC 

M Based on original mixed database 

K Kernel density estimation 

G Gaussian estimation 

L Linear transformation 

Figure 5 represents the localization error of 

different combination. In the figure we find the 

kernel estimation based on DCs represents the best 

accuracy when the tacking device is already known 

to the system, while to the unknown device the linear 

transformation method combing the kernel 

estimation and DC shows least localization error, 

which verify the validity and high degree of accuracy 

of our Device-Clustering algorithm. 

Known Device

Unknown Device

 

Fig. 5. Localization error of different combination 
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Known Device

 

Fig. 6. Device-Cluster vs.  Mixed database 

Figure 6 indicates the comparison between flows 

with and without clustering phase. We can find the 

clustering-based method increase the positioning 

accuracy to both known tracking devices and 

unknown tracking devices.  

The same result can also be seen in the Figure 7. 

No matter the tacking devices are known or unknown, 

the localization errors happen in flow with kernel 

density estimator always represent better accuracy. 
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Fig. 7. Kernel density vs. Gaussian estimation 
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Fig. 8. Linear relations between Device-Clusters 
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Fig. 9. With transfer vs. without transfer  

In Figure 8, we represent the linear relations 

between each pairwise device. The lower part of 

Figure 8 shows the linear coefficient   and the top 

half denotes the Pearson Correlation Coefficients. 

This Figure exhibits the linear relationship is 

unchanging after single devices are classed into 

several DCs. 

However, the effect of linear transformation is 

different to known and unknown devices as shown in 

Figure 9. If the devices are known, CLK and CLG 

are not better than the combination only with CK and 

CG.  But when it comes to the unknown devices, 



 

linear transformation phase proves an advantage in 

diminishing localization errors. 

C. Computational Cost Analysis 

In Bayesian positioning framework, one of the key 

issues to reduce localization error is to increase the 

sampling number. However, as the fingerprints per 

device samples increases, the cost of computation 

also rises.  To better analyze our Device-Clustering 

algorithm, the change of computational cost is drawn 

in Figure 10  and Figure 11 as sampling scale grows. 

 

Fig. 10. Computational cost of each phase  

From Figure 10 we find both the two kinds of 

positioning algorithm, Gaussian Estimation and 

Kernel Density Estimation, will not be affected 

greatly as sampling number increases. However, the 

computational cost of clustering, Gaussian Training 

and Linear Transfer step mushrooms. Therefore, 

although increasing number of sampling benefits 

positional accuracy, it promotes the training cost 

inevitably.  

 

Fig. 11.  Computational cost of our algorithm 

The same result is also shown in Figure 11. The 

known device shows slight influence from sampling 

scale, while the time overhead of unknown devices 

grows remarkably.  

5 Conclusion and Future Work 

In this paper, we propose a novel Device-Clustering 

algorithm to provide better positioning accuracy in 

solving the device heterogeneity problem. Our 

algorithm is based on the macro Device-Cluster 

rather than original devices, so that the number of 

device types the system maintains is reduced. 

Besides, the sampling overhead to each device in 

total space is decreased. More importantly, with DC's 

entry into algorithm flow, the positioning accuracy is 

obviously increased. In the experiment, we employ 

eight different devices and sample enough 

fingerprints in a real academic building. The 

comparison of different combination also shows the 

best flow when executing our algorithm. 

In the future, we will consider reducing the 

computational overhead of training phase. Because in 

the real-time positioning environment, the time-

consuming clustering will also affect the localization 

effect. At the same time, we will try to reduce the 

computing cost in the positioning phase. If the 

number of training fingerprint is M  and the number 

of observing fingerprint is N , the computing cost of 

kernel density estimator could be ( )O MN . And with 

the increase of sampling scale, the time overhead 

grows remarkably. Besides, we will apply our 

algorithm in complex metropolitan environment and 

employ more general users to expand our fingerprint 

database.  
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