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Abstract—Existing approaches for indoor mapping are often
either time-consuming or inaccurate. This paper presents the
Continuous Normal Distributions Transform (C-NDT), an effi-
cient approach to 3D indoor mapping that balances acquisition
time, completeness and accuracy by registering scans acquired
from a rotating LiDAR sensor mounted on a moving vehicle.
C-NDT uses the robust Normal Distributions Transform (NDT)
algorithm for scan registration, ensuring that the mapping is
independent of the long-term quality of the odometry. We
demonstrate that C-NDT produces more accurate maps than
stand-alone dead-reckoning, achieves better map completeness
than static scanning and is at least an order of magnitude faster
than existing static scanning methods.

I. INTRODUCTION

The mapping of indoor environments is a time-consuming
and expensive process. Contemporary static scanning systems
can create maps with high accuracies and resolutions, but
require a considerable investment of time and expertise [1].
For applications where mapping accuracy is not the dominant
consideration, a mobile mapping system would be ideal. In
addition to being operable by non-experts, mobile systems can
map at a significantly faster rate and produce more complete
maps.

However, mobile mapping systems are subject to dynamic
effects, such as vibrations, which introduce errors relative
to the platform. Furthermore, the accuracy of the platform’s
position estimate deteriorates over time, since dead-reckoning
produces small errors that accumulate. The combination of
relative errors and localisation errors significantly reduces the
quality of mapping.

To compensate for these incremental errors, exteroceptive
sensors, such as laser rangefinders and cameras, can be used
to align the new viewpoint with previously mapped areas. The
Iterative Closest Point (ICP) algorithm [2], [3] is frequently
used to register scans, thereby localising the platform without
cumulative errors from the odometry.

The main contribution of this work is the integration
of the 3D Normal Distributions Transform (3D-NDT) scan
registration algorithm [4], [5] with mobile LiDAR to create
a system for real-time indoor surveying, which is called

Continuous NDT (C-NDT). The algorithm’s robustness to
significant rotations between scans solves the primary problem
associated with mobile scanning, that is, the problem that
vehicle rotations are less controllable in mobile scanning than
in static scanning.

There are numerous applications for 3D maps of indoor
environments. For example, navigation systems require a map
to plan the optimal path to a destination, such as for an
autonomous forklift. In addition, the provision of a 3D map
would assist a device equipped with exteroceptive sensors
(such as cameras or laser scanners) to localise itself precisely.
Other applications include engineering analysis, restoration or
renovation planning and documenting the structural design of
heritage buildings [6], [7]. Mobile mapping systems are of
particular interest to the robotics community, since the ability
to map the environment while simultaneously localising itself
allows the robot to perform useful tasks autonomously, see
Thrun et al. [8] for an overview.

II. LITERATURE REVIEW

A. 3D Indoor Mapping Systems

Indoor mapping systems have varied widely throughout
history. Originally, mapping was carried out by taking physical
measurements with tape measures and theodolites. Since the
invention of the laser rangefinder, this process has been
greatly simplified. Current 3D indoor mapping systems can
be categorised based on their method of data acquisition and
registration.

Pomerleau et al. [9] used a total station to localise a set
of static laser scanner positions with millimetre precision. To
measure the orientation of the scanner as well as the position,
they mounted three reflective prisms around the platform,
allowing the total station to make three separate distance
measurements. However, this system became inefficient when
the position and mounting angles of the scanner could not
be measured from the position of the total station. When this
occurred, the total station had to be moved and relocalised,
greatly increasing the mapping time.
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A faster and more flexible technique is to distribute re-
flective targets about the scene and use them to register the
scans in post-processing. Zimmermann and Eßer [7] used
this technique to survey a catacomb, since it allowed some
flexibility in positioning the scanner. They reported an average
error of 5–6mm when registering scan positions, given a
minimum of five reflective targets viewable in common. How-
ever, Brenner et al. [1] noted that this technique has several
drawbacks. They reported that target distribution, collection
and manual intervention during registration takes five times
longer than the scanning time. In addition, they reported an
uneven distribution of alignment errors due to the ad hoc
positioning of targets.

A hybrid technique is often applied for larger sites, where
the cumulative errors of target-based registration can become
too large [7]. In these cases, a set of ground control points are
established by conducting a traverse with a total station and
these are used as a baseline for target registration.

Another category of registration technique eschews the use
of external targets altogether. The Iterative Point Algorithm
(ICP) [2], [3] repeatedly refines the relative position and
orientation between two overlapping scans by minimising the
sum of squared distances between corresponding points. For
each point in one point cloud, the corresponding point is
chosen as its nearest neighbour in Euclidean space. Nüchter
et al. [10] used ICP to register scans taken from a mobile
robot using a “stop-and-scan” methodology, that is, frequent
short-term static scanning. They achieved a coarsely estimated
0.5–3.8% deviation from ground-truth.

While ICP is a simple and reasonably accurate registration
algorithm, it has several limitations. Firstly, the algorithm may
converge to an incorrect local minimum, particularly when
the initial position and orientation estimate is poor. Another
disadvantage is that points from non-overlapping sections of
the scans may cause a systematic bias. The main disadvan-
tage, however, is that ICP requires a reasonable position and
orientation estimate to converge correctly and rapidly.

In comparison, the three-dimensional Normal Distributions
Transform (3D-NDT) [4], [11] is more robust to poor initial
alignments [12]. Magnusson et al. [5] used NDT to register
statically-acquired scans from a mine, reporting faster and
more reliable performance than ICP. A more detailed descrip-
tion of 3D-NDT is given in Section III.

A thorough comparison of ICP and 3D-NDT, undertaken
by Magnusson et al. [12], concluded that 3D-NDT converged
from a greater range of initial pose estimates. For the tested
datasets, 3D-NDT converged in 77% of cases, compared to
30% for ICP. The tested valley of convergence was ±2 m in
x and y and ±90◦ in yaw. In addition, the study found that
3D-NDT was a faster process, with a median processing time
of 2.2s as compared to 5s for ICP. However, ICP was shown
to behave more predictably than 3D-NDT. That is, 3D-NDT
may converge from a pose estimate with large initial error, but
fail from a pose estimate with less error.

Another scan registration technique that improves ICP’s
robustness to rotational deviations is Metric-Based ICP

(MBICP), as introduced by Minguez et al. [13]. MBICP
replaces the Euclidean distance used to determine the nearest
neighbour in ICP with a distance measure that simultaneously
accounts for translational and rotational displacements. This
takes into account the fact that a small rotational displace-
ment will cause points far from the sensor to be displaced
significantly from their correspondents.

A modification of this algorithm has been used successfully
by Milstein et al. [14] to align point clouds to an occupancy
grid of previously acquired scan data. However, this occupancy
grid application highlights one of the main limitations of
MBICP. Techniques used to expedite the search for nearest
neighbours in traditional ICP, such as cached kd-tree searches
[10], cannot be used with MBICP. Instead, a slower search in
polar space is required, which would not scale to full 3D point
cloud matching.

A more efficient way to map an indoor environment is to
use a mobile scanner. Talaya et al. [15] fused data acquired
from a moving laser scanner with a position estimate from
GPS and an orientation estimate from an inertial measurement
unit (IMU). Indoor applications, however, preclude the use
of absolute positioning systems like GPS. Since errors in
the position and orientation estimates obtained from dead-
reckoning accumulate, the registered scans will deviate from
ground-truth. As a result, a registration method independent
of the odometry is required.

Before scan registration techniques can be applied, the
continuously acquired laser data must be segmented into 3D
point clouds. The standard approach is to segment the data at
the extents of motion for a pitching or yawing laser and use the
odometry to form a coherent point cloud [16]. Harrison and
Newman [17] applied odometry correction to further ensure
the point cloud quality by inferring that near-vertical planes
were in fact vertical.

While researchers have applied ICP to register point clouds
segmented from a mobile scanner [16], [18], we introduce
a system for mobile mapping using NDT. This registration
algorithm is particularly suitable for mobile mapping, because
it has a wider valley of convergence than ICP and is more
robust to rotations [12]. This is advantageous, because a mo-
bile scanner that is turning as it scans will have a considerable
angular offset between the segmented point clouds.

B. Benchmarking

The accuracy of scan-matching algorithms is often non-
trivial to quantify, due to the difficulty associated with ob-
taining accurate ground-truth measurements. If accurate 3D
environment maps were already available, robotic mapping
would be redundant.

Henry et al. [19] obtained ground-truth maps using 2D
Simultaneous Localisation and Mapping (SLAM) algorithms,
on which the 3D map is overlaid. Similarly, Wulf et al. [20]
used architectural floor plans from surveyors as a benchmark
and compared them to the 3D maps generated by SLAM
algorithms. They also suggested using calibrated aerial pho-
tographs or satellite images if existing maps are unavailable.
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The 3D map is converted into a 2D map by removing all
points that do not lie on vertical surfaces (for example, walls)
and then projecting the remaining points onto the horizontal
plane. A qualitative, visual inspection of map quality is then
possible by checking whether the walls align as expected. Wulf
et al. [20] provided a quantitative measure by running a Monte
Carlo Localisation algorithm with the reference and projected
2D maps as inputs. However, these methods are not capable
of determining the yaw, pitch or elevation accuracies, due to
the inherent limitations of the 2D reference map.

C. Overview

The objective of this work is to demonstrate that, for certain
applications, C-NDT achieves a more satisfactory balance
between acquisition time, completeness and accuracy than
static scanning and existing odometry-based mobile mapping
systems.

C-NDT uses the robust 3D-NDT algorithm to register scans
that have been acquired while the scanner is moving. As
a result, it is independent of the long-term quality of the
attitude and position estimated from the gyroscopes and wheel
encoders. The concept and implementation of C-NDT has been
subjected to a number of tests for the purposes of comparison
with static scanning and mobile dead-reckoning.

The scope of this work does not extend to a rigorous
comparison of the 3D-NDT and ICP algorithms, since this has
already been undertaken by Magnusson et al. [12]. However,
the ICP algorithm was used in the experiments to confirm the
findings of [12] and to benchmark the accuracy of the C-NDT
system.

Section III introduces the 3D-NDT scan registration algo-
rithm. The proposed C-NDT mapping system is described in
Section IV in detail. Section V presents the experiments under-
taken and the results attained, categorised into investigations of
accuracy, completeness and efficiency. Finally, the conclusions
of this work are summarised in Section VI.

III. FUNDAMENTALS

The simplest representation of laser data is the point cloud,
a collection of points in 3D space sampled from a surface
or surfaces, as shown in Figure 1. While the point cloud
is useful for visualisation, it does not describe the charac-
teristics of the underlying surface explicitly. In contrast, the
three-dimensional Normal Distributions Transform (3D-NDT)
incorporates these characteristics in a representation that can
be used for efficient scan registration [5].

The 3D-NDT algorithm subdivides the point cloud into a
3D grid of cells (known as voxels) and computes a Probability
Density Function (PDF) for each cell. The algorithm then
finds the transformation that maximises the likelihood that the
points of another point cloud lie on this reference surface.
This transformation represents the change in position and
orientation of the laser rangefinder and so can be used to track
the robot’s pose.

The PDF used in the NDT algorithm is a mixture of a
normal distribution and a uniform distribution, as given in

(a) Top View

(b) Oblique View

Fig. 1. The top and oblique views of two non-aligned 3D point clouds are
shown in red and blue on the left. On the right, they have been aligned using
3D-NDT and merged to form an accurate and more complete representation
of the environment.

Equation 1, where x is a point in 3D space, µ is the centroid
of the voxelised point cloud, Σ is the covariance matrix of the
point cloud, c1 and c2 are constants and po is the expected
ratio of outliers. A mixed PDF is used since a pure normal
distribution is not robust to outliers [21].

p(x) = c1 exp

(
−1

2
(x− µ)T Σ−1(x− µ)

)
+ c2po (1)

To find the transformation that maximises the likelihood
that another point cloud lies on the NDT surface, the negative
log-likelihood of the function Ψ is minimised, as given in
Equation 2. T (p,xk) is the transformation that translates and
rotates a point xk in the new point cloud by the pose p.

Ψ =

n∏
k=1

p (T (p,xk)) (2)

The log-likelihood of Ψ is approximated by a Gaussian dis-
tribution, from which the derivatives can easily be calculated.
Since the NDT surface is piecewise smooth with continuous
first- and second-order derivatives, standard numerical opti-
misation techniques, such as Newton’s method, can be used.
The details of the algorithm and the relevant equations can be
found in Magnusson [11].

The reasons for using NDT in a continuous mapping system,
rather than the more common ICP algorithm, are twofold.
Firstly, NDT obviates the need for the computationally expen-
sive nearest neighbour search present in the ICP algorithm,
resulting in faster execution times. Secondly, NDT is more
robust to poor initial alignments than ICP [12]. This is crucial
for a mobile system, since, unlike a static system, rotations
between scans cannot be avoided.



2012 International Conference on Indoor Positioning and Indoor Navigation, 13–15th November 2012

Velocity
Fusion

Module

3D 

Conversion

Module

Segmentation

Module

Registration

Module

Angular

Velocity

Odometry Pose {G}

3D Points {R}

3D Points {P}

Laser

Position

Laser

Ranges

Laser

Position

NDT Pose 

{G}

3D Point 

Cloud {G}

Fig. 2. Flowchart of the C-NDT system. Input and output data are shown in
boxes with blue and black outlines respectively and processing modules are
shown as black ellipses.

IV. METHOD

To construct a coherent 3D map without relying on the long-
term accuracy of onboard odometry or independent sensors
such as GPS, C-NDT segments the continuously acquired
range data into 3D point clouds and registers them into the
map frame using NDT. In the following treatment, {G}, {R}
and {P} are the global, robot and point cloud reference frames
respectively. In addition, ‘pose’ refers to the position and
orientation of the body in six degrees of freedom (x, y, z,
roll, pitch and yaw). The laser rangefinder is mounted on a
robot and is rotated by ±90◦ about a near-vertical axis by a
DC motor. A flowchart of the process is shown in Figure 2.

An outline of the fusion module is given in Guivant and
Nebot [23]. In brief, the fusion module estimates the robot’s
pose with six degrees of freedom using a dead-reckoning ap-
proach. This allows inclines and unstructured natural environ-
ments to be navigated and mapped. The attitude is estimated
by integrating the angular velocities from the gyroscopes in
the Inertial Measurement Unit (IMU). By assuming that the
velocity vector is parallel to the attitude vector (as in [24]), the
3D position of the robot can be calculated from the attitude
and velocity, provided by the wheel encoders.

An outline of the 3D conversion module is given in Whitty
et al. [22]. The module synchronises the data from the laser
rangefinder and motor encoder. After synchronisation, the yaw
angle of the laser is known accurately at the beginning and end
of each laser scan. The polar coordinates from the rangefinder
are transformed into the robot’s Cartesian coordinate system
{R} and interpolated.

To make use of 3D scan-matching algorithms, the data
stream from the rangefinder must first be segmented into
3D point clouds. Each 180◦ sweep of the rangefinder forms

a full 3D point cloud and thus the extents of laser yaw
become a natural boundary for segmentation. Consequently,
the beginning of a new point cloud is triggered when the motor
encoder angle nears the extents of rotation.

The robot’s pose at the beginning of the sweep is taken as
the point cloud coordinate frame {P}. Every point observed
within the 180◦ sweep is transformed into this frame using
the odometry pose. This is performed by first transforming
the point into the global coordinate frame {G} and then
transforming back into the point cloud coordinate frame {P}.
The first transformation uses interpolated poses that account
for movement between the start and end of one laser scan.

Once the continuous laser data has been segmented into
a distinct 3D point cloud, it is registered into the global or
map frame {G} using 3D-NDT. Scan-matching dissociates
map accuracy from dead-reckoning accuracy. While one can
be sufficiently confident in the accuracy of the odometry
during the 2.7s taken to acquire the point cloud, the odometry
produces small errors that accumulate over time. Instead of the
odometry, C-NDT uses an independent exteroceptive source of
information, the point clouds themselves, to localise.

The output of the C-NDT system is a 3D map and a
sequence of poses that correspond to the path taken by the
mobile scanner. The map can be viewed in real-time as
the scanner progresses. This provides the operator with an
immediate indication of mapping quality. Rather than finding
occluded areas during post-processing and having to rescan,
they can be identified by the operator during mapping and
addressed immediately.

V. EXPERIMENTS AND RESULTS

A. Equipment

The unmanned ground vehicle (UGV) used as a platform
for this project has been described in Whitty et al. [22] and
Guivant et al. [25] and is shown in Figure 3. It is equipped with
a SICK LMS151 2D laser rangefinder, which has a full view
angle of 270◦ and can measure distances up to a maximum
of 50m with a 1σ statistical error of 12mm. In addition, a
value for the reflection intensity is provided for each range
measurement. A DC motor rotates the upward-facing laser
scanner around a near-vertical axis by 90◦, capturing a wide
field of view. The UGV is also fitted with a Microstrain 3DM-
GX3 Inertial Measurement Unit (IMU) and motor encoders.

B. Mapping Details

The experiments took place on the second floor of an
engineering laboratory building, containing cluttered rooms
of various sizes and straight, sparsely-featured corridors. In
the primary dataset, the robot travelled approximately 110m,
entering four rooms and traversing long sections of corridor,
as shown in Figure 5a. The area and volume mapped was
340m2 and 1220m3 respectively. Within some rooms, the robot
turned a full revolution in order to exit from the same door,
which would generally degrade the quality of mapping using
dead-reckoning, since the gyroscope errors would accumulate
quickly.
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(a) The actuated laser arrangement gives a 360◦ field of
view about the tilted axis of rotation.

(b) The actuated laser rangefinder can be seen on the top
of the UGV.

Fig. 3. One of the UGVs developed by UNSW Mechatronics was used to
collect data for the experiments in this paper.

C. Accuracy

To compare the accuracy of C-NDT to existing ICP-based
and odometry-based mobile mapping systems, 3D point clouds
were constructed from the primary dataset using each of these
methods. Both qualitative and quantitative methods were used
to determine model accuracy.

In order to establish a correct ground-truth for quantitative
analysis, physical measurements were taken along the robot’s
path using a tape measure. The robot’s poses, as generated by
C-NDT, ICP and the odometry, were recorded at each of the
measured locations. The Euclidean distance between a refer-
ence position towards the beginning of the traverse and any
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Fig. 4. Comparison of the accuracy of C-NDT, ICP, odometry and simulated
static scanning using the traverse in Figure 5.

subsequent location was then compared to the corresponding
ground-truth measurement.

Figure 4 displays the deviation between the reference dis-
tances measured and the distances reported by C-NDT, ICP
and the odometry. These deviations from ground-truth provide
a metric that can be used to estimate accuracy and compare
between mapping methods. The deviation is plotted against
the cumulative distance travelled, since the mapping errors
are expected to be proportional to distance. It is important
to note that from 50m to 80m distance travelled, the robot
mapped two confined rooms and was forced to turn sharply
on many occasions. This would tend to reduce the accuracy
of the odometry at a greater rate than the accuracy of C-NDT.
The paths and reference positions are plotted in Figure 5a.

The results show that the map generated using C-NDT
is significantly more accurate than that generated from the
odometry or ICP. Moreover, the values for the odometry
and ICP suggest that their mapping accuracies degrade at a
significant rate with distance travelled, from the accumulation
of errors. In contrast, the values for C-NDT show that its
accuracy degrades much slower with distance travelled.

To estimate the comparative accuracy of static scanning,
the error arising from the registration of discrete point clouds
has been estimated. Zimmermann and Eßer [7] achieved a
mean error of 5–6mm when registering scan positions, given
a minimum of five reflective targets viewable in common. To
register a scan from the end of the map to the beginning of
the map, the geometry dictates that at least eight scanning
positions would be required, every 10m. The cumulative
registration error for static scanning is also shown in Figure 4.

The maximum registration error of 48mm compares
favourably with the 136mm error obtained by C-NDT in the
last scan of the experiment and the peak C-NDT error of
265mm. In addition, mobile scanning introduces errors relative
to the moving platform due to the dynamic effects such as
vibration. As a result, static scanning can achieve greater
accuracies than mobile scanning.
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C−NDT Path
ICP Path
Odometry Path
C−NDT Reference Point
ICP Reference Point
Odometry Reference Point
Static Scanning Position

(a) Experimental setup showing the path taken by the UGV overlaid on the existing floor plan. Reference points are detailed in the text.

(b) A 2D projection of the wall points extracted from the C-NDT, ICP and odometry-based point clouds, shown in black, blue and red respectively.

(c) A 2D projection of the wall points extracted from several C-NDT maps, acquired over multiple days. To aid visualisation, the full 3D point clouds,
including floor and ceiling points, are not shown.

Fig. 5. A visual comparison of C-NDT, ICP and odometry-based pose estimates and mapping accuracy.

In Figure 5b, 2D projections of the point clouds constructed
using C-NDT, ICP and pure odometry are shown, overlaying
the floor plan. A qualitative visual inspection reveals that
the point clouds constructed using odometry and ICP quickly
accumulated significant errors in rotation and translation. In
comparison, the C-NDT point cloud corresponded very closely
to the ground truth and did not drift noticeably.

While there are a few apparent discrepancies, the field
survey indicated that the “ground-truth” reference map was
in fact less accurate than C-NDT. In particular, the two main
corridors are offset incorrectly in the floor plan.

Figure 5c gives further qualitative evidence for the accuracy
of C-NDT, showing a 2D projection of the map constructed
from a series of traverses, conducted over several days.
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(a) Static laser scan pattern: single
position.

(b) Mobile laser scan pattern: edge.

(c) Static laser scan pattern: three
positions.

(d) Mobile laser scan pattern:
circumnavigation.

Fig. 6. Comparing the completeness obtained by mobile and static scanning,
using the example of a rectangular room containing two obstacles (in blue).
The scanning points (at left) and path (at right) are displayed in yellow.

In this experiment, the traverse was open loop. For both
static and mobile scanning, a closed loop traverse would
have bounded the cumulative registration error, distributing it
around the loop, such as in [26].

D. Completeness

A primary advantage of mobile mapping systems is that they
are able to observe a scene from many different viewpoints.
To demonstrate the consequent increase in map completeness,
static and mobile scanning has been simulated in a simple
2D environment with two interior columns. Completeness is
defined as the percentage of a scene that has been mapped to
a given resolution.

Figure 6 shows the scan patterns formed by a fixed laser and
a moving laser with the same angular resolution. It shows the
shadowing caused by the columns, whereby sections of wall
and column are not mapped. To ensure a complete map in the
presence of occlusions, a number of static scanning positions
are required. In comparison, a mobile scanner will obtain a
complete map in the course of moving through the room.

The map completeness percentages for the static and mobile
scanning simulations in Figures 6c and 6d were 30% and 87%
respectively. These values refer to the percentage of fixed-size
cells that contained at least one laser measurement along the
surfaces of the simulated environment. Both simulations used
the same angular resolution in the horizontal plane (1.34◦) and
a cell size of 1cm.

In this simulation, interior columns are used as a clear ex-
ample of occlusion. However, this investigation applies equally
to any other obstructions, such as furniture and partitions. A
cluttered environment will require a large number of scan
positions to achieve full completeness. Moreover, for real-
world environments, choosing the scan positions is non-trivial

TABLE I
ESTIMATED TIMES FOR STATIC AND MOBILE SCANNING.

Static Time Type Description
(min)

Setup 3 One-off Arrange reflective targets
Setup 2 Per scan Move, set-up and level tripod

and scanner
Data Collection1 3 Per scan Scanning to achieve the mini-

mum resolution
Post-Processing 5 Per scan Registration of each point

cloud

Mobile Time Type Description
(min)

Setup 0.5 One-off Start UGV and run programs
Data Collection 0.06 Per metre Driving at 0.3 m/s
Post-Processing 0 Per metre All processing is real-time

and so heuristics are generally used. Poor choices will result
in incomplete maps with greatly varying point densities.

E. Efficiency

To demonstrate the efficiency of this mobile mapping sys-
tem, the setup, data collection and processing times have been
compared to the standard static approach. The variable that
has been kept constant is map completeness.

Consider the mapping of a room with interior columns, such
as shown in Figure 6. For n collinear columns, a minimum of
n + 1 static scanning positions would be required to ensure
full and even coverage of the room. A greater number of
scanning positions would be necessary if line-of-sight was
required between them, such as during a surveying traverse.
In comparison, a mobile mapping solution would need only
to circumnavigate the room.

For this experiment, the minimum resolution for both static
and mobile mapping was chosen to be 2cm. Using the simu-
lation, it was found that the mobile platform should drive at
0.3m/s to achieve this level of completeness. The values used
to estimate setup, data collection and post-processing durations
for mobile and static scanning are listed in Table I. The static
scanning durations are low, conservative estimates chosen in
consultation with a surveying professional.

Figure 7 demonstrates that for an increasing number of
interior columns, the total time to survey the room statically is
an order of magnitude greater, and increases at a greater rate,
than for mobile scanning.

The comparison being made is between the mobile scan-
ning system and static scanning using a typical surveying
rangefinder. Surveying rangefinders often have fixed maximum
rotation rates about the vertical axis, whereas the scanner used
in the mobile system can rotate at an arbitrary speed. If the
static scanner had the same scanning speed as the mobile
scanner (2.7s per scan), the data collection component of

1Laser rangefinders used in surveying often have fixed maximum rotation
rates about the vertical axis, which varies between products.
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Fig. 7. Comparing the efficiency of mobile (M) and static (S) scanning using
the estimated times from Table I.

the scanning time would be reduced by 98.5%. Even in this
case, the total time to survey the room would be an order of
magnitude greater than for mobile scanning.

One contribution to C-NDT’s efficiency is its ability to
perform all scan registration processing in real-time. The mean
time taken to register a point cloud is 1.31s with a standard
deviation of 0.73s, whereas the time taken to acquire the point
cloud is 2.70s.

For the traverse shown in Figure 5, it took 6.3 minutes to
map an area of 340m2. In comparison, Dongzhen et al. [27]
reported that it took 1.5 days to map an indoor area of 550-
600m2 using static scanning. Hence, per square metre, C-NDT
is two orders of magnitude faster, taking only 1.4% of the time
taken by static scanning.

In addition, the map shown in Figure 5c took 46.2 minutes
to acquire with C-NDT. It covers an area of 2019m2, including
24 rooms and sections of corridor. While it is non-trivial to
determine the required static scanning locations for such a
map, particularly since the rooms are cluttered and contain
many obstacles, a very conservative estimate would be 50
scanning positions. Using the durations from Table I, this
would take at least 8.4h, a tenfold increase in scanning time
when compared to mobile scanning. This time estimate is itself
conservative, because it does not include the time taken to
move the reflective targets.

VI. CONCLUSION

In this paper, we have presented a system for indoor map-
ping using a mobile laser scanner: Continuous NDT. C-NDT
segments continuously acquired laser data and processes it in
real-time using the 3D-NDT scan registration algorithm.

We have demonstrated that C-NDT produces more accurate
maps than stand-alone dead-reckoning, with a quantitative
analysis showing 85% less deviation from ground-truth on the
tested indoor traverse. While this is an indicative statistic only,
the qualitative results presented in this paper, from many addi-
tional traverses, support this general conclusion. Nonetheless,
a comprehensive study, examining many hundreds of datasets
from different buildings, would be required to establish more
generalisable results.

Furthermore, we have shown that a mobile scanner is able to
achieve a higher map completeness than a static scanner, since
it is able to observe a scene from many different viewpoints,
reducing shadowing effects. Finally, we have demonstrated
that C-NDT is at least an order of magnitude faster than static
scanning for a constant map completeness.

We conclude that, for applications where the accuracy
requirements are slightly lower, C-NDT achieves a more
satisfactory balance between acquisition time, completeness
and accuracy than static scanning and existing odometry-based
mobile mapping systems.

Additional benchmarking methods could be used to more
closely characterise the accuracies achievable with C-NDT.
In particular, the deviation of the estimated pose could be
determined more precisely by using a total station to measure
the actual pose at a set of positions within the traverse.

Real-time extraction and matching of geometric features
from each segmented point cloud opens the possibility of
extending the C-NDT system. This would enable the automatic
registration of maps produced on separate occasions or by
separate vehicles and assist in closing the loop. While we have
not studied the effect of closing the loop on C-NDT accuracy,
results from the field of Simultaneous Localisation and Map-
ping (SLAM) suggest a large improvement in accuracy can be
expected while maintaining real-time processing capability.
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