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Abstract—Aiming to solve one of the serious problems of radio-
signal strength (RSS) indoor positioning (namely, fluctuation of
RSS values due to reflective waves), a novel indoor-positioning
method based on RSS distribution modeling (called ”RSS dis-
tribution modeling using the mirror-image method,” RDMMI),
was developed and evaluated. With RDMMI, a model of RSS
distribution is created by using measured RSS and considering
reflective waves. RDMMI achieves an average positioning error of
3.1 m, which exceeds that of conventional nearest-neighbor (NN)
method by 0.6 m. It also accomplishes average positioning error
of 3.7 m with a small set of randomly chosen RSS measurements.
Furthermore, even in the case that radio source positions are
unknown, RDMMI exceeds NN method.

I. I NTRODUCTION

Indoor-positioning systems are prevailing for providing lo-
cation based services using location information of moving
objects such as persons or devices.[1], [2] Location based
services are needed both indoors and outdoors. The most
popular location based service is indoor navigation.[3], [4]
There are also needs for location based service to support op-
erations of large-scale facilities like plants or logistics centers.
For example, navigation while maintenance and inspection for
industrial plants, optimizing an operation in logistics centers
based on movement of workers and baggages, and evacuation
guidance in commercial facility or public facility.

One of the important issues for indoor-positioning systems
is constructing low-cost and commonly used infrastructure.
Although, currently, there are no standards but various kinds
of devices and methods for indoor-positioning, wireless-LAN
based positioning system is likely to become a standard.
Because, wireless-LAN devices are widely used for telecom-
munication and comparatively inexpensive.

In this article, a novel indoor-positioning method using
widely-used Wi-Fi access points is proposed. Figure 1 shows
a positioning system which the proposed method is based on.
In this system, positioning devices (Wi-Fi access points) are
installed in the positioning environment. A positioning object
person has a receiver device such as a smartphone which is
able to receive radio signal strength (RSS) from the access
points. The receiver device can send received RSSs to a server.

：Wi-Fi access point

Positioning object person Receiver

Server

Figure 1. Positioning system

Regarding wireless RSS based indoor-positioning, there are
two main approaches: trilateration based [5], and sampling
based [5], [6], [7], [8], [9], [10]. By the trilateration based
approach, the distance between a radio source and a receiver
is calculated using a monotonically attenuating property of
RSS according to the distance. Then a position where a
RSS is measured is determined by means of a geometric
approach. By the sampling based approach, a model which
indicates a relationship between position and RSS is created
by training model parameters using sampling data measured
in a positioning field. There are mainly two kinds of modeling
approaches: probabilistic modeling and propagation modeling.
The former approach creates a probabilistic model which
indicates probabilities of positions when a RSS is measured.
Then a target position where a RSS is measured is estimated
by the model. The simplest probabilistic-modeling method is
the nearest-neighbor (NN) method. The NN method searches
sampled RSS measurements for a position that has the nearest
RSS values to presently measured RSS values. The latter
approach creates a propagation model which describes how
RSS attenuate with increasing distance from a radio source.
In this approach, model parameters are also trained using
sampling data.

The trilateration based approach requires positions of de-
vices which are installed in an environment but does not
require a set of RSS measurements which is previously978-1-4673-1954-6/12/$31.00c⃝2012 IEEE
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measured at multiple points in a positioning area. A problem
with trilateration based approach is that positioning accuracy
decreases because of fluctuation of RSS values caused by radio
wave reflection by obstacles such as walls, pillars, and human
bodies.

The sampling based approach requires a set of RSS mea-
surements but often doesn’t need device positions. A problem
with sampling based approach is that to achieve high posi-
tioning accuracy, many RSS calibration samples are needed to
evenly measured in the positioning field.

Accordingly, in the present study, a new positioning method,
using RSS-distribution modeling, was developed. With this
method, RSS distribution is modeled by using RSS measure-
ments while the radio-wave reflection effect is considered. The
RSS distribution can be modeled with a small number of RSS
measurements, even if the sample points are non-uniformly
selected. Furthermore, positions of access points can be esti-
mated as model parameters using the RSS measurements.

The rest of this paper is organized as follows. Several related
works and our contributions are explained in Section 2. The
RSS-distribution modeling method is described in Section 3.
Evaluation results of the proposed method compared with
the NN and trilateration methods are presented in Section 4.
Finally, summary and future works are mentioned in Section
5.

II. RELATED WORKS

A. Trilateration based approach

In the case of trilateration, RSS is monotonically attenuated
according to the distance between a radio source (i.e. an
access point) and a receiver. RSS can therefore be assumed
to be a function of the receiver position,(x, y, z), and an RSS
vector with the same number of dimensions as the number of
receivers is given by

R = (R1, R2, · · · , Ri)

= (f1(x, y, z), f2(x, y, z), · · · , fi(x, y, z)) (1)

Each function,fi(x, y, z), is a monotonically attenuating
function in which each access point’s position is the high-
est RSS value. Here, if the distance between the i-th ac-
cess point’s position(xi, yi, zi) and the receiver isdi =√
(x− xi)2 + (y − yi)2 + (z − zi)2, RSS vectorR is given

by

R = (g(d1), g(d2), · · · ) (2)

whereg denotes a common function representing the rela-
tionship between RSS and distance. By trilateration, receiver
positions are calculated by solving the following simultaneous
equation with the observed RSS of each receiver.

di =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 = g−1(R) (3)

B. Sampling based approach

In a real situation, RSS is effected by reflection waves
caused by walls or obstacles. Trilateration cannot therefore
achieve high positioning accuracy. To resolve this problem, a
probabilistic model of RSS is created, using a set of previously
measured RSS which includes the effect of reflection waves.

Roos et al.[7] applied a machine-learning framework to in-
door positioning. In detail, positioning error of three machine-
learning-based methods (NN, kernel, and histogram) were
compared. The accuracies of the kernel and histogram methods
exceeded that of the NN method by 25 to 30% in terms
of average distance error. These technologies are used in an
indoor-positioning system provided by Ekahau, Inc.[11]

Bahl et al.[5] presented experimental results concerning NN
based indoor-positioning methods. In this experiment, a target
was moved along a hall way in a building. Average distance
error of positioning determined by the NN-based method was
about 3 m. In the paper, a propagation modeling considering
wall obstacles is additionally proposed, aiming to generate
RSS samples. The propagation-modeling method is based on
the ”floor-attenuation-factor propagation model” (FAF)[12].
Parameters of the propagation model such as wall-attenuation
factor are estimated by using measured RSS. To estimate wall-
attenuation factors, the layout information of the building is
used.

C. Contributions

As for indoor positioning, the reflection effect of RSS must
be considered because there are a lot of obstacles indoors.
Trilateration based approach cannot consider these effects.
Propagation modeling proposed in [5] can only deal with a
known number of walls as obstacles. As a result, the model
cannot describe arbitrary obstacles (e.g., shelves or pillars) that
are sometimes not marked on a map. In contrast, the prob-
abilistic modeling can consider arbitrary obstacles because
measured RSS includes obstacle effects, though gathering
enough calibration samples is costly.

To overcome these problems, a technique called ”RSS distri-
bution modeling using the mirror-image method” (RDMMI),
which is based on the mirror-image method for expressing
reflective waves, is proposed here. By this method, RSS values
at several points in a positioning area are measured in advance.
Using these RSS values, RDMMI models RSS distribution
according to radio-source positions. The experimental evalua-
tion of RDMMI (described as follows) shows that this method
describes multiple reflective waves and attains high positioning
accuracy even if the calibration samples are few and non-
uniformly placed. Furthermore, positions of access points can
be estimated as model parameters. Even in this case, the
proposed method achieved practicable positioning accuracy.

III. RDMMI POSITIONING METHOD

The process of the proposed method, which is called RD-
MMI, is as below. First, the models functionfi(x, y, z; Θ),
which indicates RSS on position(x, y, z) from i-th radio
source, by using the mirror-image method [13] to express
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reflective waves.Θ is a set of model parameters offi. Second,
the model parameter setΘ is estimated using a maximum-
likelihood method for fitting the function to measured RSS
values. Finally, a receive point is estimated by maximizing
posterior probabilityP (x, y, z|R,Θ).

A. Mirror Image Method for RSS distribution modeling (RD-
MMI)

In the step for estimatingfi, Θ that maximizes loga-
rithmic posterior probabilitylnP (Θ|C) is calculated, where
C = {(x1, y1, z1,R1), (x2, y2, z2,R2) · · · (xn, yn, zn,Rn)}
is a vector of all the observation data from every access points.
Here,(xn, yn, zn) indicates n-th data measurement point,Rn

indicates a vector of n-th observation data from each access
point.

First, because of the independence of RSSs received
from each access point, a model parameter setΘi which
maximizes a posterior probabilityP (Θi|C) is estimated
for each access point independently.P (Θi|C) can be ex-
pressed with probabilistic processes of each measurement data
P (Θi|xn, yn, zn, Rn,i) as

lnP (Θi|C) =
∑
n

lnP (Θi|xn, yn, zn, Rn,i) (4)

where Rn,i is a n-th measurement data from a i-th access
point. According to the Bayes rule,

P (Θi|xn, yn, zn, Rn,i) ∝ P (Rn,i|xn, yn, zn,Θi)Pi(Θi) (5)

It follows that,

lnP (Θi|C) =
∑
n

(lnP (Rn,i|xn, yn, zn,Θi) + lnP (Θi))

+ const (6)

P (Rn,i|xn, yn, zn,Θi) can be modeled assuming that
Rn,i obeys a Gaussian distribution with an average of
fi(xi, yi, zi; Θi) and a varianceσ. σ is assumed to be constant,
for convenience; however, to be exact, parameterσ should be
estimated. Here,P (Θi) is assumed to be a uniform distribu-
tion. Θi can therefore be estimated by using the least-square
technique (e.g. the Newton’s method [14] or an evolutionary
algorithm [15]) to maximize the following likelihood function:

lnP (Θi|C) = − 1

2σ2

∑
n

(Rn,i − fi(xn, yn, zn; Θi))
2 + const

(7)

The important point is how to formulate the functionfi.
In our proposed method, the functionfi is modeled assuming
that measured RSS is a sum of radio wave directly received
from an access point (direct wave) and that reflected by walls
or obstacles (reflective wave). An reflective wave is supposed
to arrive from an imaginary source which is symmetrical to
the position of the access point with respect to the reflecting
surface. This is an approach based on the mirror image

Figure 2. RSS modeling using the mirror image method

method [13] known in a field of electromagnetics, therefore
the proposed method is called ”mirror image method for RSS
distribution modeling (RDMMI)”. A conceptual diagram of
the proposed method is shown in Fig. 2.

RSS is attenuated inversely related to a square of a distance
between a radio source and a receiver. RSS is represented by
the log scale unit (dBm),fi can be formulated as,

fi(x, y, z; Θi) = 10 log10
∑
k

bk,i
(r− rk,i)ak,i

(8)

where r = (x, y, z). k is identifier for radio sources of
direct and reflective waves, which is called dimensions of the
function fi. rk,i = (xk,i, yk,i, zk,i) which indicates a position
of radio source of k-th direct or reflective wave. The model
parameter setΘ is composed ofak,i, bk,i and(xk,i, yk,i, zk,i).
ak,i indicates an attenuation factor, andbk,i relates an output
intensity of a radio wave. The number of dimensions k is
required to be determined to an optimal value, however, it is
a future work and not discussed here. Generally, with larger
number of k, the functionfi becomes more complex and
expected to describe more detailed real situation. Although,
a large number of training data are necessary to estimate a
large number of parameters.

Additionally, eq. 8 can be deformed as follows,

fi(x, y, z; Θi) = 10 log10(
1

(r− r0,i)an,i
+
∑
k

b′k,i
(r− rk,i)ak,i

)+ci

(9)
where b′k,i =

bk,i

b0,i
, ci = 10log10b0,i. The purpose of

this deformation is to handle output intensities of reflective
waves in proportion to that of a direct wave. Besides,r0 =
(x0,i, y0,i, z0,i) can be fixed to the position of the i-th access
point, or estimated as unknown parameters. In evaluations
below, both the results are described.

B. Location estimation

In the location-estimation step, using estimated model pa-
rameter setΘ, position (x, y, z) that maximizes logarithmic
posterior probabilityP (x, y, z|R,Θ) is calculated.R indicates
a vector of received RSS from each access point. According
to the Bayes rule, the following function is maximized:
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Figure 3. Points of access points. 17 access points are installed.

P (x, y, z|R,Θ) ∝ P (R|x, y, z,Θ)P (x, y, z) (10)

lnP (x, y, z|R,Θ)

= lnP (R|x, y, z,Θ) + lnP (x, y, z) + const

=
∑
i

lnP (Ri|x, y, z,Θi) + lnP (x, y, z) + const (11)

Here,P (Ri|x, y, z,Θi) can be modeled under the assump-
tion thatRi obeys a Gaussian distribution with an average of
fi(x, y, z; Θi) and a varianceσ as follows:

lnP (x, y, z|R,Θ) =− 1

2σ2

∑
i

(Ri − fi(x, y, z; Θi))
2

+ lnP (x, y, z) + const (12)

The distribution of position likelihoodP (x, y, z) can be
assumed as a uniform distribution for the sake of ease.
Finally, position(x, y, z) is calculated by minimizing

∑
i(Ri−

fi(x, y, z; Θi))
2. The simplest way to minimize

∑
i(Ri −

fi(x, y, z; Θi))
2 is determining a reference data with the

minimum mean square distance. Reference data are generated
on a grid point using the estimated RSS distribution model.
Furthermore, on the purpose of estimating trajectories, the
function fi(x, y, z; Θ) can be applied to particle filters or
Kalman Filters [16] to estimate a position(x, y, z).

IV. EXPERIMENT

A. Experimental settings

RDMMI with RSS data was evaluated in a experimental
field with three rooms and a hall way. Figure 3 shows a map of
the experimental area. The area was about 350m2. Walls and
pillars are also shown in the figure. The rooms are separated
by walls or a curtain (a boundary between the room 1 and
2). Each room has several openings (with no door). In this
field, 17 access points (LAN-W150N/AP by logitec Corp.)
were installed on the ground. Positions of the access points
are shown in Fig. 3.

In this experimental field, RSS data are measured using
android terminals on 110 sampling points. Sampling points

of a training data set and a test data set, which are different
among evaluation experiments, are described below. For each
sampling point, averaged RSS of 30 measured data is used for
evaluations.

Location-estimation errors due to RDMMI, NN and trilat-
eration are compared in each evaluation. For NN, a sampling
point of a training data which has the nearest RSS values
to those of a test data is an estimated target position. For
trilateration, test-data whose value is greater than -65 dBm
are used to evaluate positioning error. Before the trilateration
calculation, sets of three receivers that don’t lie on a straight
line (i.e., a sine of the angle which positions of the three
receivers make is greater than 0.2) are chosen. The target
position was, then, determined as a centroid of positions
calculated by trilateration for each chosen set of receivers.

B. Average error comparison

Location-estimation error due to RDMMI was compared to
NN and trilateration. For this evaluation, 17 access points, a
training data set of 42 data and a test data set of 34 data
were used. The sampling points of the data sets are shown in
Fig. 4.First, using the training-data set, the RSS distribution
model is estimated by RDMMI. Second, the estimated RSS of
1m-grid points are calculated by the RSS distribution model.
Third, the positions of the test-data set are estimated by the
NN method using the grid-point RSS.

As explained above, the RDMMI model describes reflective
waves by the mirror method, and the number of functional
dimensions indicates the level of complexity, that is, how many
reflective waves are assumed. Accordingly, as the functional
dimension becomes larger, the model becomes more complex.
A complex model, however needs a huge amount of training
data, because the number of parameters to be estimated is three
times the number of dimensions. In this evaluation, a number
of dimension is determined as a dimension between 0 (no
reflective wave) to 15 which has the least error. Furthermore,
a radio source of the first dimension of the model can either
be estimated or fixed at the position of the access point. In
this evaluation, both patterns are evaluated.

Figure 5 shows average errors due to RDMMI (AP position
is known and unknown), NN and trilateration. Average errors
are 3.1 m for RDMMI (AP positions unknown), 3.0 m for
RDMMI (AP positions known), 3.7 m for NN and 8.7 m for
trilateration. RDMMI reduces the positioning error by 16.2%
(0.6 m) in comparison to that of NN.

C. Positioning error with a small training data set

One of the advantages of RDMMI is reduction of cost for
sampling training data. In this evaluation, location-estimation
errors with various number of training data are presented.
Sampling points of training data (20, 83 points) are shown
in Fig. 6. Sampling points of a training data set with 42
points and test data set are same as that shown in Fig. 4.
For each training data pattern, a number of model dimension
is determined as a dimension between 0 (no reflective wave)
to 10 which has the least error. Figure 7 shows average errors
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training data (42 points) test data (34 points)

Figure 4. Sampling points of a training data set and a test data set

training data (20 points) training data (83 points)

Figure 6. Sampling points of training data set
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Figure 5. Error comparison

due to RDMMI (AP position is known and unknown) and NN.
Average errors of RDMMI (AP position unknown) are 3.4,
3.1, 3.0 m with 20, 42, 83 points of training data. In this case,
though average error increases according to decreasing training
data, RDMMI with 20 training data reduces the positioning
error by 10.4% (0.4 m) in comparison to that of NN. For the
case with known AP positions, average errors of RDMMI are
about 3.1 m with all the training data patterns. In this case,
RDMMI achieved practicable positioning accuracy with only
20 points of training data.

To evaluate a robustness of the proposed method with
respect to choices of training data sets, positioning accuracy
of RDMMI in the case that RSS measurements were randomly
chosen was evaluated and compared with that of NN. For
this evaluation, 20 sample RSS measurements were randomly
selected from the measurement points shown in Fig. 6 (83

2.52.72.93.13.33.53.73.9

83 points 42 points 20 points
Average er
ror [m]

Number of training data

RDMMI(AP positionsunknown)RDMMI(AP positionsknown)NN
Figure 7. Error comparison according to the number of training data

points). Ten randomly sampled data sets were used as training
data to evaluate location-estimation errors due to RDMMI
and NN. The number of model dimensions of RDMMI is
determined as a dimension between 0 (no reflective wave) to
10 which has the least error. Figure 8 shows average errors
due to RDMMI (AP positions are known and unknown) and
NN. Average error are 3.7 m with 0.2 m of standard deviation
for RDMMI (AP positions unknown), 3.3 m with 0.18 m of
standard deviation for RDMMI (AP positions known), and 4.3
m with 0.16 m of standard deviation for NN. RDMMI achieved
stably low positioning error no matter how to choose a training
data set.

D. Positioning error with a small number of APs

In practical use, high positioning accuracy with small num-
ber of access points is beneficial. Therefore, positioning errors



2012 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION, 13-15TH NOVEMBER 2012

12 access points8 access points4 access points

Figure 9. Positions of access points
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Figure 8. Error comparison with randomly chosen training data set

22.533.544.555.5

17 APs 12 APs 8 APs 4 APs
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Number of access points

RDMMI(AP positionsunknown)RDMMI(AP positionsknown)NN
Figure 10. Error comparison according to the number of access points

with limited number of access points are presented in this
section. Location-estimation errors with 4, 8, 12, 17 access
points are evaluated. The positions of the access points are
shown in Fig. 9. Positions of 17 access points are same as
that shown in Fig. 3. Training data set and test data set are
same as that shown in Fig. 4. A number of model dimension
is determined as a dimension between 0 (no reflective wave)
to 15 which has the least error.

Figure 10 shows average errors due to RDMMI and NN,
according to numbers of access points. A number of access
points affect to information amount of RSS vector, therefore
a positioning error increases as a number of access points
decreases. In the case of relatively big number of access points,

the result shows that RDMMI achieves smaller average error
than NN. However, with 4 access points, average errors of
RDMMI and NN are almost comparable. This may caused
by low-quality of the RSS distribution model. To specify the
lowering factor and solve the problem is a future work.

V. CONCLUSION

A novel indoor-positioning method (called ”RSS distribu-
tion modeling using the mirror image method,” RDMMI),
which uses RSS distribution modeling using the mirror method
to consider the radio wave reflection effect, was developed and
evaluated. The positioning accuracy of RDMMI was shown to
exceed conventional NN and trilateration methods. Positioning
accuracy with small sets of training data was evaluated. It
was found that RDMMI achieves higher accuracy (3.4 m in
the worst case with 20 training data) than NN. Furthermore,
positioning accuracy in the case of a small number of access
points was evaluated. The average error in the case with 17,
12, 8 access points was smaller than NN. However, the error
in the case with 4 access points is comparable to NN method.
These evaluation results shows that the proposed method can
appropriately estimate an RSS distribution, while considering
radio wave reflection, and achieve high positioning accuracy.
In addition, even in the case that positions of access points
are unknown, RDMMI achieved higher accuracy than NN.

As for future works, three tasks remain. First, the optimal
model complexity (functional dimensions of the model) should
be automatically determined. Second, the proposed method
should be combined with a tracking method, such as a particle
filter, to improve tracking accuracy. Third, to achieve higher
positioning accuracy, radio wave noise should be considered.
One approach for considering noise is using human body
orientations, as mentioned by King et al.[17]
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