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Abstract— Localization for indoor environments has gained 
considerable attention over the last decade due to the enormous 
potential in the technology and the significant challenges facing 
this area of research. One practical localization technique that 
relies on the available fixed wireless infrastructure is RF location 
fingerprinting. Received Signal Strength (RSS)-based location 
fingerprinting has been the dominant fingerprinting approach in 
the literature due to the simplicity and practicality of measuring 
the RSS in a variety of wireless technologies (such as IEEE 802.11 
and UMTS). Recognizing the diminishing gains using the RSS-
based techniques, researchers have recently shifted focus to 
proposing improvements at the physical layer by adopting the 
channel impulse response (CIR) as an alternate fingerprint. In 
this paper we propose a novel fingerprint structure that is based 
on the entropy estimation of the channel; which provides a more 
unique/robust fingerprint that is capable of distinguishing 
between locations more effectively. Through extensive frequency 
domain channel measurements and analysis in a typical indoor 
environment we further validate the proposed technique and 
compare it against RSS and CIR-based fingerprinting. We will 
show that the technique combines the advantage of RSS-based 
fingerprinting simplicity of structure (storage and pattern 
recognition requirements) and improves on the robustness of the 
CIR-based fingerprinting techniques. Finally we will illustrate 
that our entropy-based location fingerprinting can be practically 
integrated into the architecture of popular OFDM-based WLAN 
systems. 

Keywords-Location Fingerprinting; WLAN localization; indoor 
localization; entropy estimation; CIR location fingerprinting; RSS 
fingerprinting; AR modeling 

I.  INTRODUCTION 
ocalization for indoor environments has gained 

considerable attention over the last decade due to the 
enormous potential in the technology and the significant 

challenges facing this area of research [1]. The localization 
technology provides the fundamental basis for a myriad of 
location-enabled services in indoor environments such as 
locating personnel and objects in residential homes, guiding 
shoppers inside a mall for the latest discount offers, locating 
the elderly in nursing homes or children tracking in day-care 
centers.  

The complexity of the indoor wireless channel, the lack of 
Line of Sight (LOS) paths, and severe multipath and shadow 
fading problems make it difficult to accurately locate objects. 
One practical and popular localization technique that relies on 
the available fixed wireless infrastructure is location 

fingerprinting. Location fingerprinting combines the use of 
both radio frequency measurements and pattern recognition 
algorithms in order to find the best correlation between the pre-
measurements (offline phase) and the real-time measurements 
(online phase). RSS-based location fingerprinting has been the 
dominant fingerprinting approach in the literature due to the 
simplicity and practicality of measuring the RSS in a variety of 
wireless technologies (such as IEEE 802.11 and UMTS). The 
majority of the work in the literature focuses on the pattern 
recognition stage of location fingerprinting [2], [3], [4]. 
However, results reported in [5], [6] showed that complex 
pattern recognition algorithms, such as neural networks or 
kernel regression, perform as well as the simple nearest 
neighbor (NN) or k-nearest neighbor. Recognizing the 
diminishing gains using the RSS-based techniques, researchers 
have recently shifted focus to proposing improvements at the 
physical layer by adopting the channel impulse response (CIR) 
as an alternate fingerprint. The CIR-based location 
fingerprinting essentially turns the disadvantage of the 
multipath to a powerful advantage by realizing that at each 
location the measured CIR provides a unique signature. This 
can be used to significantly improve the pattern recognition 
stage. In [7], CIR-based location fingerprinting was first 
introduced for cellular technology. The statistics of the CIR as 
fingerprints were implemented in [8], where RMS delay 
spread, number of multipath components, and power were used 
in a neural network framework for localization in mines. CIR-
based location fingerprinting for WLAN systems showed great 
potential by exploiting the log of the CIR through Ray Tracing 
(RT) simulations [9]. The challenge of using CIR-based 
fingerprinting for WLAN systems, however, is the limited 
bandwidth available which results in low time-resolution 
fingerprints. This results in difficulty to distinguish between 
fingerprints that are 1 meter apart. Recently, a RT based 
evaluation of CIR fingerprinting for different system 
parameters highlighted the impact of system bandwidth on the 
practical achievable accuracy [10]. Another issue with CIR 
fingerprinting is the requirement for matrix storage and 
computations at the pattern recognition stage; since for M 
Access Points (APs) the fingerprint at each location is an 
M N× matrix, where N is the number of samples of the CIR 
vector. As a result, there is a need for a more accurate, robust 
and computationally efficient fingerprint structure for WLAN 
systems.  

In this paper we introduce a novel fingerprint that is based 
on the entropy estimation of the channel which provides an 
accurate fingerprinting structure that reduces computation 
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complexity and storage requirements. Since a CIR in a given 
location is a realization of a random process (random in space 
and time) then from information theoretic point of view the 
entropy of CIR can represent unique information at each grid 
point. In addition to the robust localization capabilities, 
entropy-based location fingerprinting eliminates the need for 
manipulation and storage of matrices thus reducing complex 
computation in the pattern recognition stage and reducing 
storage requirements of the offline fingerprint database. We 
will first provide an overview of entropy estimation through 
Autoregressive (AR) modeling techniques. Then we will 
illustrate the performance gains of our proposed fingerprint 
using measurement data collected in an indoor environment. 
Note that in this paper we will focus on the performance gains 
of fingerprinting structures rather than fingerprinting 
algorithms (pattern recognition). As a result the simple k-NN 
algorithm will be used due to its simplicity and the fact that 
other research papers have shown that its performance is close 
to more complex pattern recognition algorithms. 

The paper is organized as follows. In section II we describe 
a general formulation of location fingerprinting using the 
simple k-NN technique. In section III we introduce entropy 
estimation for CIR fingerprints that is based on AR modeling 
and highlight how it can be used in localization. In section IV 
we provide a brief discussion on the measurement 
methodology. In Section V we present the results and analysis 
of our proposed technique. Finally the paper is concluded in 
Section VI. 

II. LOCATION FINGERPRINTING 
In typical fingerprinting-based location systems an RF 

fingerprint database is created in an offline stage by 
constructing the fingerprints/signatures through measurement 
of RF channel parameters such as RSS in different locations 
across a grid. In the online phase a mobile terminal in an 
unknown location constructs a fingerprint by measuring 
channel parameters to all APs within its coverage. This 
measured fingerprint is then compared to the offline database 
and the position is estimated using pattern recognition 
techniques. The simplest pattern recognition technique is the 
nearest neighbor where the position is estimated by selecting 
the location of the fingerprint in the database that is the closest 
(smallest distance in vector space) to the online measured 
fingerprint.  

The fingerprint database is typically created by gridding a 
room/area in a given indoor environment. The grid is 
composed of L locations that are spaced by ∆ . The coordinates 
of a given location on the grid can be represented by 

[ , ]Tj j jx y=p where jx  and jy  are the x- and y-coordinates 

of the thj location and [1, ]j L∈ . The offline 
fingerprint/signature at each grid location is given by the vector 

1[ , , ]M T
j j jz z=z   and each element is a measured parameter 

of the channel (e.g. RSS) from one of the thm APs where 
[1, ]m M∈ and M is the total number of APs covering the 

indoor environment. Note that for RSS and entropy, z is an 
( 1)M × vector and each element is a scalar value. However for 

CIR fingerprints, z is a ( )M N× matrix and each element is a 
CIR vector of length N samples. In the online stage a 
fingerprint/signature v is similarly captured by the mobile 
device where 1[ , , ]M Tv v=v  .  

In the pattern recognition stage, an estimate of the position 
ˆ ˆ ˆ[ , ]Tx y=p  can be determined by choosing the nearest 

neighbor. For vector fingerprints such as RSS and entropy, the 
nearest neighbor is the offline fingerprint with the minimum 
Euclidean distance to the online fingerprint which is given by 

min arg min j
j

d = −z v .  (1) 

For CIR fingerprints the nearest neighbor will have the 
highest correlation to the offline fingerprint or  

max arg max ( , )j
j

corrρ = z v
  

(2) 

where ρ is the correlation coefficient and corr() is the 
correlation function. If more than one nearest neighbors is 
available then for the k-NN algorithm the position is estimated 
by  
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where k is the number of nearest neighbors selected and iα is a 
weight that can be set to distinguish between the selected 
positions. For vector fingerprints such as RSS and entropy, the 
weights can be given by 1i idα = where id  is the Euclidean 
distance between the offline and online fingerprints. For CIR 
fingerprints the weights can be given by the correlation 
coefficient or i iα ρ= . 

 

III. ENTROPY FINGERPRINTS 
In this section we will first introduce how entropy 

estimation of signals can be achieved and then outline how it 
will be used to create a novel fingerprint structure. 

A. Entropy Estimation  
From information theory the entropy of a random variable 

X is given by the well known Shannon relation [11] 

[ ]2 2( ) log ( ) log ( )X X X XH X E p p x p x dx
∞

−∞

= − = − ∫
      

(4) 

where ( )Xp x  is the PDF of X . In practice, direct evaluation 
of (4) is difficult because it is not easy to compute or estimate 
the PDF from real data. As a result the key in accurate entropy 
estimation is the ability to estimate the PDF of a random 
variable in real-time. Typical methods rely on estimating the 
PDF through histograms [12], order statistics [13] or kernel 



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012 

methods [14]. A more practical and efficient alternative 
technique to estimate the PDF of a random signal has been 
proposed by [15][16] where the PDF of a random variable X
can be estimated simply by appealing to the theory of Power 
Spectral Density (PSD) estimation. An estimate of the PDF 
ˆ ( )Xp x  can be parameterized by a set of coefficients { }ka of 

an autoregressive (AR) model in the form of a PSD ( )WS x , 
where 1 k p≤ ≤  is the number of parameters [15,16] or 
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where 2
Wσ  is designed such that 

1/ 2

1/ 2
( ) 1WS f df

−
=∫  since PSDs 

are different from PDFs in that they do not usually integrate to 
1. The bounded support [-1/2, 1/2] ensures that the random 
variable is constrained between these values, since a general 
PDF is not periodic with period one as is imposed by the AR 
model [15]. This can be easily achieved by normalizing the 
data by Wkσ  where Wσ  is the standard deviation and k  is a 
suitable parameter [15]. One way to clarify the modeling of the 
PDF by a PSD is to note that if ( , )X nω  is a random process 
then we can find a process ( , )W nω   that has a PSD that 

matches ( )Xp x . One such process is ( ( ))( , ) j nXW n e ϕ ωω +=  
where ( )ϕ ω  is uniformly distributed over [0, 2 ]π  and 
independent of X  [16]. It can be easily shown that the 
autocorrelation of W , ( )WR k , is the first characteristic 
function of X . The relationship between the PDF and the PSD 
can be highlighted through the following Fourier Transform 
relationships 

( ) ( )F
W WR k S x→   (6a) 

( ) ( )F
x Xk p xφ →   (6b) 

It is clear that if the autocorrelation of the process W , 
( )WR k , is equal to the characteristic function of the random 

variable X , ( )X xφ , then ( ) ( )X Wp x S x= . As a result to 
estimate the PDF ˆ ( )Xp x  we can find an AR model of the form 
in (5). In order to estimate the model parameters in (5) based 
on available data { }1 2, , , Nx x x  it is well known that the 
Yule-Walker equations relate the AR model parameters to the 
autocorrelation function [17]. The autocorrelation function in 
this case is the samples of the characteristic function given by 
[15] 

{ }1 2( ) ( ) ( )j kx
X x WF p x k E e R kπφ−  = = =   

(7) 

where ( )x kφ is the characteristic function and ( )WR k  is the 
autocorrelation function of the underlying process W  related to 
the PSD ( )WS x . The autocorrelation function essentially 
becomes samples of the characteristic function and in the 
remainder of the paper ( )x kφ  and ( )WR k will be used 

interchangeably and they both refer to (7). To estimate the AR 
model parameters (ultimately estimate the PDF) we need to 
estimate the autocorrelation of the random process which can 
be given by the sample moment estimator 
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where 0, ,k p=  , p  is the model order and N  is the number       
of samples in the data vector. The AR model parameters can 
then be found by solving the Yule-Walker equations [15,17]  

ˆ ˆ ˆW W=R a r    (9) 

where 
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ˆ ˆ ˆ ˆ(1) (2) ( ) Ta a a p=   a  and 

ˆ ˆ ˆˆ (1) (2) ( )
T

W W W WR R R p =  r  . 

The Levinson-Durbin recursive algorithm can be used to solve 
for the coefficients. Similarly, an estimate of 2ˆWσ  can be 
computed (once ˆka are estimated) by 

2

1

ˆ ˆˆ ˆ(0) ( ) ( )
p

W W W
k

R a k R kσ
=

= − −∑
  

(10) 

Once the AR parameters of the PSD that models the PDF are 
obtained then the estimate of entropy can be computed by  

1/ 2 1/ 2

2 2
1/ 2 1/ 2

ˆ ˆ ˆ( ) log ( ) ( ) log ( )X X W WH p x p x dx S x S x dx
− −

= − = −∫ ∫

    
(11)

  
 

A more practical expression can be obtained using 
Plancherel-Parseval formula to the right-hand side of (11) [16] 
which yields  

*ˆ ( ) ( )W W
k

H R k C k
∞

=−∞

= −∑            (12) 

 

where ( )WR k  is the thk correlation coefficient and 

{ }* 1
2( ) log ( )W WC k F S x−=  is the thk  component of its 

cepstrum [17]. Since ( )WS x is real, both ( )WR k and * ( )WC k  
have Hermitian symmetry and thus (12) can be given by  
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*

0

ˆ 2Re ( ) ( )W W
k

H R k C k
∞

=

  = −  
  
∑ .           (13) 

From (5) it is clear that the entropy estimate will depend on 
the AR model order. A very well known model order selection 
technique is the Minimum Description Length (MDL) criterion 
where the idea is select a p that minimizes the following cost 
function [17] 

( ) log (log )pC p N N pε= +   (14) 

where N  is the number of data samples, p  is the model order 
and pε is the modeling error typically given by 2ˆWσ  in (10). 

B. Entropy Fingerprint in WLAN Systems 
In order to estimate the entropy of the channel, an estimate 

of the channel is required. In a generic IEEE 802.11a/g that is 
based on OFDM it is possible to estimate the CIR from the 
channel transfer function (CTF) estimation that is carried out 
for channel correction prior to symbol demodulation. Figure 1 
illustrates a typical OFDM receiver with entropy estimation. 
For a given CIR estimate it is possible to compute the entropy 
using the procedure described in the previous section. At a 
given location covered by M access points it is then possible to 
construct the entropy fingerprint as 1 2ˆ ˆ ˆ[ , , , ]M T

j j j jH H H=z   
where each element is an entropy estimate to one of the APs 
covering the environment. Note that the entropy fingerprint is 
a vector at a given location and thus shares RSS’s simplicity, 
but is more accurate due to the information representation of 
entropy.  

IV. MEASUREMENTS DATABASE 

A. Background 
In order to analyze the proposed approach, a database of 

measured CIRs was collected in the academic building of 
Khalifa University in Sharjah, UAE. Frequency-domain 
measurement techniques have been utilized to characterize the 

CIR for communication and geolocation applications in the 
past [18,19]. The measurement system provides estimates of 
the CTF in the frequency domain which can then be post-
processed to obtain the CIR. Both entropy and RSS can then be 
derived from the measurements. The measurements were 
conducted in the WiFi 2.4 GHz band. 

B. Measurement System 
The measurement system is based on Rhode and 

Schwartz’s Vector Network Analyzer (VNA) that has the 
capability of measuring S-21 parameter (CTF) up to 11 GHz. 
In order to increase the dynamic range of the system a 30 dB 
power amplifier at the transmitter and 17 dB low-noise 
amplifier at the receiver were used. The overall system 
dynamic range is 120 dB. The antennas used were omni-
directional 2.4 GHz with 5 dB gain. The height of the 
transmitter and receiver antennas was fixed to 1.5 m. The 
VNA, transmitter and receiver were connected by low-loss RF 
cables.  

C. Measurement Procedure 
Part of the ground floor of the academic building was 

gridded with points spaced by 1 meter. The area covered two 
main corridors, the RF lab and the student area. Figure 2 
illustrates the floor plan and the measurement locations. Three 
AP locations were measured (these are actual AP locations of 
the existing WiFi network). Note that in many buildings in 
UAE, extensive number of APs is generally used to provide 
coverage to the users. This is mainly due to the fact that the 
buildings have concrete exterior and interior walls. In addition 
a heat insulation layer is usually inserted in the middle of the 
concrete blocks to further insulate the buildings from the 
external heat. As a result the measurement database and results 
are unique from that point. 

Since the VNA has only a transmitter and a receiver port, 
multiple AP transmission had to be emulated by repeated 
movement of the transmitter from AP locations 1 to 3. That is 
in the first round the AP transmitter is located in TX1 location 
and the receiver covers all the offline and online points. In the 

A/D S/P 
Cyclic 
Prefix 

Removal 

Channel 
Correction CTF FFT P/S 

down 
conversion 

Entropy 
Estimation Ĥ  IFT CIR 

Figure 1: System diagram of entropy estimation in OFDM-based WLAN 
systems 

LN 

AG 

Figure 2: Floor plan and measurement locations. Triangle – Transmitter 
locations; dots – offline receiver locations; ‘x’ – online receiver 
locations. 
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second time the transmitter is placed in the second TX2 
location and the measurements are repeated and so on. Since 
the fingerprints were not measured at the same time from the 
three APs, care was taken to ensure uniform and controlled 
channel environments. That is measurements were conducted 
in times of low activity (early morning/evening) to ensure that 
the channel exhibits stationary properties.  

At each location, 40 sequential measurement snapshots 
were recorded which is important to capture the variation in 
time for different motion scenarios. During the measurements, 
two motion scenarios were measured: the first is stationary 
where there are no movements around the vicinity of the 
transmitter or receiver. For the second, 3 people walked around 
the TX/RX path to emulate random motion that could be 
encountered in indoor environments. This is important since in 
practical scenarios the motion of individuals/objects can 
significantly change the fingerprints and degrade the 
localization. In general it is possible to assume that in the 
offline stage no motion exists (since the survey is usually 
conducted late at night/weekends) and motion will affect the 
online fingerprints only. 

Finally, the measurements were conducted to cover the 
entire 2.4 GHz band. Specifically the measured bands that were 
analyzed are for the 1st non-overlapping option specified by the 
IEEE 802.11g standard that is channels 1, 6 and 11. In this 
paper we analyze the performance of the fingerprints using the 
measurements from channel 1 since it has the minimum 
interference from nearby operational 802.11 APs. In fact by 
looking at the data we could verify that band 6 experienced the 
most interference and analysis of the impact of interference on 
the fingerprints is our future work. 

V. RESULTS AND ANALYSIS 

A. Overview 
In this section the localization performance of the proposed 

entropy fingerprinting technique is presented. Further we 
compare the performance with two popular fingerprinting 
techniques, namely RSS and CIR. RSS fingerprints are 
obtained from the CIR which is typically modeled as 

1

( ) ( )
p

k

L
j

k k
k

g e φτ β δ τ τ
=

= −∑   (15) 

where kβ , kφ  and kτ  are the amplitude phase and delay of the 
thk  path, respectively. Note that for lower bandwidth systems 

such as WLAN, clusters of path arrivals are detected instead 
of individual path; that is due to the low time-resolution and 
inability to resolve the multipath components. In the 
measurement data, CIR is obtained from the frequency domain 
CTF by inverse Fourier Transform. RSS can then be computed 
by detecting K multipath components that are above the noise 
threshold (typically -100~-110 dBm) and it is given by  

2
10

1

10log
K

i
i

RSS β
=

 
=   

 
∑ .  (16) 

B. Performance of Entropy-based Location Fingerprinting 
The main parameter that is important to entropy estimation 

using the AR modeling approach is the model order. In order 
to find the appropriate model order, the AR modeling has to 
be repeated for a selected number of model orders and then the 
one with the lowest modeling error according to MDL (14) is 
chosen. In order to test the importance of the model order on 
the performance we analyzed the RMSE against different 
model orders from 2-20 and compared it to the MDL. Figure 
3 summarizes the results. The RMSE for RSS and CIR are 
included for comparison as well and they are constant since 
they do not depend on the AR model order. The results 
obtained are for 40 time measurements (offline), 10 time 
measurements (online), 3k =  nearest neighbors and the 
stationary scenario. Entropy-based fingerprinting in both MDL 
and specific model order outperforms RSS and CIR. It is clear 
that the model order in the range of 4-6 provides the best 
performance. In fact results presented in [20] highlighted that 
the wireless multipath channel can be modeled as an AR 
process and showed that a model order of 2 is sufficient. Since 
model order of 6 provides the best performance then in the 
remainder of this paper it will be used instead of the MDL 
approach. This further reduces the computational requirements 
of repeated model order testing. In addition a model order of 6 
reduces the computational requirements of solving the Yule-
Walker equations (9) for many different model orders. Since 
this model order is sufficient then it will be used for the 
remainder of all the entropy estimation, simulations and 
results. 

In Figure 4, the location fingerprinting performance 
(RMSE) using the k-NN approach is presented for stationary 
and moving scenarios with weights that are related to the 
Euclidean distance and correlation for RSS/entropy and CIR, 
respectively. The results are obtained by averaging the 
measured CIR at each location: an average of 40 time 
measurements for the offline points and 10 time measurements 
for the online/test points. For estimating entropy, the AR 
model order was set to 6.  

Figure 3: Impact of AR model order selection on the performance of 
entropy-based location fingerprinting. 
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In general for RSS and entropy, the results show that 
increasing the number of nearest neighbors used to estimate 
the position improves the performance. However this is not 
the case for CIR and this is mainly attributed to the fact that 
for different points along the corridors, the CIRs are strongly 
correlated with each other. This correlation can be explained 
by the structure of the corridors that imposes a certain 
signature (multipath cluster arrivals). Thus a nearest neighbor 
with high correlation can be in fact in the opposite side of the 
corridor.  

In the stationary scenario, entropy outperforms CIR and 
RSS due to its ability to capture the information in the CIR 
more accurately thereby enabling more accurate fingerprints. 
For the motion scenario entropy outperforms RSS but CIR 
performs better for 9k < due its robustness to motion which 
was validated experimentally in [21]. However for higher 
number of neighbors entropy outperforms CIR for the same 
reason as discussed for the stationary case. 

It is clear that the motion around the transmitters/receiver 
can have significant impact on the performance since it can 
alter the fingerprints. Thus it is necessary to analyze the 
performance against different time averages. In practice more 
time measurements can be taken for the offline points (since 
it’s conducted in the survey stage) compared to the online 

points which require real-time measurements and localization. 
Figure 5 illustrates the impact of the number of time 
measurements on the RMSE of the location estimate for 5k =  
nearest neighbors. The number of offline time measurements 
was fixed at 40 while the online measurements were varied 
from 1 to 40. Again in the stationary scenario (Fig 4 (a)), 
entropy outperforms both RSS and CIR. In addition, as the 
number of measurements increase entropy RMSE further 
decreases. This is attributed to the fact that averaging the CIR 
provides a “cleaner” signal from which entropy can be 
estimated – which results in more unique fingerprints. For the 
motion scenario, RSS degrades with increasing number of 
time measurements because RSS is an averaging notion and 
motion affects a significant portion of the 40 time 
measurements. Entropy’s performance is close to the CIR but 
does not exhibit the deterioration with time measurements that 
affects RSS fingerprinting.  

 

Figure 4: Performance against number of nearest neighbors selected. (a) 
Stationary – no motion. (b) Motion 

(b) 

(a) 

Figure 5: Performance against number of time measurements used to 
estimate the average of the CIR. For the offline fingerprints 40 time 
measurements and 1-40 measurements for the online fingerprints. (a) 
Stationary – no motion. (b) Motion. 

(b) 

(a) 
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VI. CONCLUSION 
In the past several years, RSS fingerprinting has gained 

attention as a practical solution to the indoor localization 
problem. Research work focused on improvements in the 
pattern recognition stage. However, comparative studies 
showed diminishing improvements in accuracy mainly due to 
the weakness of RSS as a fingerprint. In this paper, we have 
introduced entropy as a novel fingerprinting structure that 
characterizes the multipath information in the CTF/CIR 
between a transmitter and a receiver.  

Using AR modeling we have illustrated that it is possible 
to estimate entropy accurately and incorporate it in a location 
fingerprinting framework. We further verified the 
effectiveness of entropy as a fingerprint by conducting and 
analyzing measurements in a typical office environment. The 
results show that in stationary conditions between the 
transmitter and receiver (no movements) entropy outperforms 
both RSS and CIR. Increasing the number of nearest 
neighbors improves entropy further. In addition increasing the 
number of time measurements (averaging) can enhance 
entropy estimation and thus uniqueness of the fingerprint. In 
motion scenarios RSS exhibits the worst performance, while 
entropy can match and outperform CIR in most scenarios. 

Finally the value of entropy as a fingerprint is based on the 
fact that it can capture the information inherent in CIR fairly 
accurately and reduces the burden of matrix 
correlations/computations that CIR suffers from. Essentially it 
provides the uniqueness of CIR (in most cases better than 
CIR) with the simplicity of RSS fingerprint structure (vector 
fingerprint processing). 
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