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Abstract—FootSLAM or simultaneous localization and map-
ping (SLAM) for pedestrians is a technique that addresses the
indoor positioning and mapping problem based on human odom-
etry (aka pedestrian dead reckoning), e.g. with a foot-mounted
inertial sensor. FootSLAM follows the FastSLAM factorization,
using a Rao-Blackwellized particle filter to simultaneously esti-
mate the building layout and the pedestrian’s pose - his position
and orientation. To that end, FootSLAM divides the 2D space
into a grid of uniform and adjacent hexagons and counts the
number of times each particle crosses the edges of the hexagons
it visits. As we shall show, the complexity of FootSLAM grows
quadratically with time, preventing the mapping of large areas.

In this paper we present a new geographic tree-based data
structure, called H-tree, to reduce the quadratic-in-time compu-
tational growth rate of naive FootSLAM to t times log t. In
addition, we introduce a compact representation (alphabet) for
the set of six counters that are used to map the transitions of
the particles across the edges of each hexagon. This alphabet is
particularly effective during the exploration phases of FootSLAM
that requires much particle diversity.

In this contribution, the computational savings of the H-tree
are presented both theoretically and with real-world data. In
practice, we believe that FootSLAM can be applied in quasi
real-time applications that require rapid mapping of unknown
areas. Additionally, the mass market offline mapping process can
be undertaken much more efficiently.

Keywords—Indoor navigation, real-time pedestrian localization
and mapping, FootSLAM, FastSLAM.

I. INTRODUCTION

Pedestrian navigation has attracted significant research in-
terest over the past few years. Pedestrian navigation refers
to the process by which the position of a pedestrian can be
determined over time. Whereas outdoor pedestrian navigation
relies on the use of satellite signals and GNSS-aided automated
mapping techniques for the determination of the pedestrian’s
position (e.g. GPS receiver), indoor environments forbid the
use of satellite signals due to distorting effects such as multi-
path propagation.

To meet the challenges of accurately determining the po-
sition of a pedestrian in indoor environments, one of the
addressed topics has been the use of low-cost sensors that the
pedestrian wears or carries and that measures his steps while
walking. One of the possibilities is the use of MEMS-based
inertial sensors (IMUs). Nevertheless, it is well-known that the

performance of these IMUs is prone to unbounded drifting
errors over time despite the use of zero velocity updates
at every step [1]. However, when the constraints that limit
the pedestrian’s motion are known - i.e. a map, it has been
shown that these errors can be limited and that IMUs can be
used to obtain stable positioning in two and three dimensions
[2][3][4]. Nonetheless, maps are often unavailable, proprietary,
obsolete, incomplete, outdated or do not represent other non-
wall features of the environment - e.g. pieces of furniture,
stalls, etc. - that conduct the motion of the pedestrian as much
as walls do.

FootSLAM or simultaneous localization and mapping
(SLAM) for pedestrians was recently presented to address this
[5]. Human measurements are used by a Rao-Blackwellized
Particle Filter (RBPF) to generate a map of the environment
while estimating the pose of the pedestrian - his position and
orientation - within the map. To map the environment, the
2D space has been divided into a grid of hexagons where
the particles map their transitions across the edges of the
hexagons. FootSLAM has already shown its SLAM capabili-
ties at different building environments [5][6][7]. However, as
we shall show, the computational requirements of FootSLAM
increase strongly with the covered area, showing a linear
growth per time step.

In this paper we present a new geographic tree-based data
structure, called H-tree, to reduce this linear growth rate
per time step to logarithmic, thus allowing quasi real-time
processing. Furthermore, an alphabet of symbols has been
introduced to compactly represent the six transition counters
that store the number of times that each particle has crossed
the edges of a hexagon.

This paper is organized as follows: Section II introduces the
current particle filter implementation for FootSLAM. Section
III analyzes the complexity of a naive FootSLAM implemen-
tation. Section IV presents the H-tree and its impact on the
complexity of FootSLAM and Section V explains the alphabet
of symbols. Next, Section VI describes a possible approach
to store the particles’ diversity of hypotheses when mapping
large areas. Finally, experimental results and conclusions are
presented in Sections VII and VIII respectively.

978-1-4673-1954-6/12/$31.00 c©2012 IEEE



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

II. FOOTSLAM’S PARTICLE FILTER IMPLEMENTATION

FootSLAM uses a particle filter to estimate the pedestrian’s
poses and the map layout. The basic idea of particle filters
is to represent the desired posterior density of the state by a
set of Np weighted samples, called particles [8]. FootSLAM
builds on the FastSLAM algorithm [9] that follows the Rao-
Blackwellized factorization. Rao-Blackwellized particle filters
(RBPF) use particles to represent the posterior over some of
the state variables along with some parametric posterior den-
sity function (in visual SLAM usually Gaussians) to represent
the other variables [9] .

FootSLAM represents human motion as a first order Markov
process: The next step of the pedestrian depends only on his
current location. In order to obtain the probability distributions
of human motion as a function of location, FootSLAM parti-
tions the 2D space into a grid of Nh adjacent regular hexagons.
The particles register their transitions across the edges of the
hexagons they visit in the form of transition counts, C.

The main goal of FootSLAM is the computation of the
following full posterior [5]:

p({PUE}0:k,M|Z
U
1:k), (1)

where, at time step k, Pk refers to the pose of the pedestrian,
Uk is the true step vector, ZU

k is the step measurement
subject to correlated errors Ek as well as white noise, and M
represents the time invariant map of the environment where
the pedestrian walks.

Following the FastSLAM factorization [9] the FootSLAM
problem can be decomposed into a pedestrian localization
problem and a mapping problem conditioned on the pedes-
trian’s poses [5]. As a consequence, the full posterior can be
simplified:

p({PUE}0:k,M|Z
U
1:k) = p(M|P0:k)︸ ︷︷ ︸

map estimation

· p({PUE}0:k|ZU
1:k)︸ ︷︷ ︸

pose estimation

.

(2)
Furthermore, the division of the space into independent

hexagons makes possible the decomposition of the mapping
problem into map estimation subproblems [5], one for each
hexagon, resulting in:

p(M|P0:k) =
∏

h∈Nh

p(Mh|P0:k), (3)

where Mh represents the local map of hexagon h, that is,
a vector of 6 random variables denoting the probability of
transitions across each edge e ∈ {0 · · · 5} of the hexagon h:

M
e(Uk)
h(Pk−1)

= p(Pk ∈ h′|Pk−1 ∈ h). (4)

Thereupon, Me(Uk)
h(Pk−1)

represents the probability of crossing
edge e when leaving hexagon h to go into hexagon h′ by
adding step vector Uk to Pk−1.

Therefore, the full posterior can be divided into (1 + Nh)
estimators, one for the computation over the pedestrian’s
poses, step vectors and correlated errors and Nh estimators
for the computation of the posterior over the map.

A. Particle’s Map and Cumulative Map

In FootSLAM a RBPF is applied to estimate the pedestrian’s
history of poses, step vectors and errors. Each particle i in the
RBPF represents {{PUE}ik, p(M|Pi

0:k)}.
But for the particles to effectively represent p(M|Pi

0:k),
each particle must possess its own data structure to store the
associated map estimates corresponding to the pedestrian’s
history of poses Pi

0:k. This structure is referred to as particle’s
map or, in short, map.

The local map Mh corresponding to hexagon h is estimated
using a data structure that we have called HTC (hexagon
transition counters). An HTC consists of a vector of length
six. Each vector element is used to register the transitions Ce

h

across an edge. The associated HTC to hexagon h that has
been visited by particle i is:

{Mh}i = {C0
h, C

1
h, C

2
h, C

3
h, C

4
h, C

5
h}i.

Note that when written in bold face, Mh denotes the unknown
random variable that we wish to estimate: The transition
probabilities across the edges of a hexagon. On the other hand,
Mh represents an HTC, i.e. the vector of 6 hexagon transition
counters from which the probabilities can be inferred [5].

Each particle’s map, {M}i, is composed of the set of visited
hexagons N i

vis with their corresponding HTCs, i.e.:

{M}i = {h, {Mh}i}; ∀h ∈ N i
vis.

Our naive FootSLAM implementation - from now on re-
ferred to as naive FootSLAM - builds this map using a lookup
table where each entry corresponds to a visited hexagon and
its HTC. As we shall demonstrate, the choice for the map
structure will have a significant impact on the performance of
FootSLAM.

In addition, the hexagon transition estimates contained in
the Np particles’ maps can be compressed in the form of
a cumulative map. This cumulative map {M}cum contains
the hexagons visited by all particles with their corresponding
cumulative HTCs, {Mh}cum:

{M}cum = {h, {Mh}cum}; ∀h ∈ N cum
vis ,

where N cum
vis = ∪N i

vis; ∀i ∈ Np.
The cumulative HTC can be computed using the weights of

each particle wi:

{Mh}cum = {C0
h, C

1
h, C

2
h, C

3
h, C

4
h, C

5
h}cum, (5)

where
{Ce

h}cum =
∑
i∈Np

{Ce
h}i · wi. (6)

B. RBPF Algorithm in FootSLAM

The goal of this paper is to analyze the complexity of naive
FootSLAM and to reduce it. Thus, a summary of the RBPF
algorithm is recalled here (see Section III.A in [5] for a more
detailed version):

1) Initialize all Np particles pose and draw initial error
states from a proposed initial distribution.
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2) For each time stamp k:
a) Draw particles from a proposal density.
b) For all particles, compute the new pose of the

pedestrian Pi
k.

c) Update the weight wi
k of each particle i based on

the existing transition counters {Ce
h}i correspond-

ing to those edges crossed by i when moving from

Pi
k−1 to Pi

k: wi
k ∝ wi

k−1 · {
Ce

h + αe
h

Ch + αh
}
i

, where

Ch =
∑
e

Ce
h and αe

h and αh =
∑
e

αe
h are the

prior counts.
d) Normalize particle’s weights to sum to unity.
e) Update the transition counters {Ce

h}i of the crossed
edges corresponding to step starting in Pi

k−1 and
finishing in Pi

k.
f) Resample if required.

In a nutshell, particles that revisit similar transitions are
rewarded thus allowing the generation of a reliable map of
the walked areas.

Steps 1 and 2a, 2b, 2c and 2d are straightforward. We will
focus our attention on the two last steps of the RBPF in naive
FootSLAM (steps 2e, 2f), which will be explained in the next
subsections.

C. Update of Hexagon Transition Counters

The update consists of the addition of one count to the
counters of those edges that were crossed when the pedestrian
modeled by particle i moved from Pi

k−1 to Pi
k. For example,

if edge e = 2 of hexagon h was crossed, such a transition is
mapped as follows:

{Mh→e=2}i = {C0
h, C

1
h,C

2
h + 1, C3

h, C
4
h, C

5
h}i,

where Mh→e=2 indicates that the HTC has been updated after
crossing edge 2.

The update of the HTC is the most fundamental step in
the RBPF because it represents the basis for the particle
weight computation (step 2c). If particle i revisits hexagon h
crossing an edge that it had already crossed, it will be rewarded
with a greater weight update than the other particles that
are not revisiting edge transitions. As a result its hypotheses
for the history of pedestrian’s poses, step vectors and errors
{PUE}i0:k will be considered to be more likely the one that
the pedestrian and the system actually followed.

D. Resampling Step

Resampling means drawing N ′p new particles from the ex-
isting set of Np particles according to their importance weight
wi

k [8]. Drawing a particle (called “resampling” particle)
from a generating or “parent” particle usually means copying
all its state information. As a consequence, the entire map
{M}i = {h, {Mh}i} needs to be copied (with replacement)
from the resampling particle.

Resampling allows the particle filter to concentrate on
particles with large weight and eventually eliminate those that
have a low weight.

III. FOOTSLAM COMPLEXITY ANALYSIS

An important aspect of analyzing an algorithm refers to
the determination of the needed amount of resources for its
execution (time steps or memory requirements) as a function
of the algorithm’s input size [10].

Algorithms are usually analyzed in the asymptotic sense,
i.e. for an arbitrary large input size. Big O notation, omega
notation and theta notation are used to this purpose. In this
contribution, we focus on big O notation, which shall be
explained next.

A. Big O Notation

Big notation, usually denoted as O, is used to express the
worst-case scenario for a given algorithm by providing an
upper bound for its growth rate.

An algorithm exhibits a growth rate on the order of a
mathematical function O(f(n)) if [10]:

0 ≤ T (n) ≤ C · f(n); ∀n ≥ n0,

where C and n0 are positive constants.
An algorithm is said to be constant growth rate if its

complexity growth rate is bounded by a value that does not
depend on the size of the input n. It is written as O(1).

B. Naive FootSLAM Complexity Analysis

As discussed above, FootSLAM’s implementation of Fast-
SLAM uses, in the limit, Nh separate estimators over the map
and one estimator over the pedestrian’s poses. Thus, with Np

particles in the particle filter, FootSLAM maintains a total of
Np · (1 +Nh) estimators.

Our implementation of FootSLAM fixes the number of
particles Np and the maximum number of hexagons in the grid
Nh at the beginning of the estimation process. However, in the
worst-case scenario, a person will visit a constant number of
new hexagons H per time step. To cope with this situation, we
envision a scalable implementation for FootSLAM in which
Nh can be dynamically incremented over time to allow the
mapping of large areas. Thus, the number of hexagons in the
grid will be considered a linear function of time: Nh = O(t).

Our goal is to analyze the complexity in time and per
time step k of the different steps of the RBPF algorithm
given the input parameter Nh: T (Nh) = T (t). Since Np

remains constant during the FootSLAM estimation process, the
analysis with one particle is valid for any Np. The complexity
of the FootSLAM algorithm after time t, when the walk
is over, can be obtained simply by summing the resulting
complexity order per time step over all time steps.

It is clear that steps 2a, 2b, 2c and 2d require constant time
at every time step k:

T 2a, 2b, 2c, 2d
k (t) = O(1).

We will focus our attention on the last two steps of the
RBPF algorithm (update and resampling steps) and analyze
their dependency with the number of hexagons Nh and their
impact on the complexity growth rate over time.
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1) Complexity of the Update Step: The update step in naive
FootSLAM is related to the search and insertion costs of a
lookup table, {M}i = {h, {Mh}i}. This lookup table has
been implemented using a Hash table whereby collisions are
prevented by means of a biunivocal correspondence between
the hexagons and their Hash code. Therefore, the time require-
ments of search and insertion are constant:

Tupd
k (t) = O(1).

2) Complexity of the Resampling Step: At the resampling
step, at each time step, each resampling particle needs to
copy (with replacement) the map of the parent particle. Two
cases can be easily differentiated when analyzing FootSLAM’s
complexity:

a) Exploration of White Space: By exploration of white
space we refer to the stage in which particles explore new
areas, visiting new hexagons. Thus, the size of the Hash
table grows linearly with time, making the resampling step
require linear time in the number of visited hexagons. As a
consequence, the resampling step during exploration of white
space (ws) depends on the time step k itself:

Tws
k (t) = O(Nvis(k)) = O(t).

b) Revisiting Areas: When the particles revisit hexagons,
the size of the lookup table remains constant, e.g. with Nvis

entries. Therefore, the run-time of the resampling step will
not depend on the time elapsed: Each particle needs to copy
Nvis entries. In that case, the resampling step requires constant
time:

T rev
k (t) = O(Nvis) = O(1).

As it can be observed, the complexity of naive FootSLAM
per time step is dominated by the resampling step during
exploration phases, that is, FootSLAM requires time linear
in the covered area for each time step k.

Hence, after integrating over all steps k we obtain the
requirements in time per FootSLAM estimation process:

TFS(t) = O(t2). (7)

As a conclusion, we can state that the bottleneck of naive
FootSLAM is located at the resampling step while new areas
are being discovered, showing a quadratic-in-time complex-
ity growth rate.

FootSLAM’s main goal is the mapping of large areas
where Nh tends to infinity in quasi real-time applications [7].
The complexity analysis reveals that the bottleneck in naive
FootSLAM is caused by the map copying process during the
resampling step. Thus, a per-particle data structure is not a
fit approach to build the maps of the particles. A new data
structure has been developed to reduce the complexity growth
rate of FootSLAM from quadratic to t log t. This data structure
is called H-tree and it is presented in the next section.

IV. THE H-TREE: A NEW DATA STRUCTURE FOR
COMPLEXITY-REDUCED FOOTSLAM

The H-tree or Hexagon Tree is a tree-based data struc-
ture specifically designed for FootSLAM to reduce its time
requirements from quadratic to linear times logarithmic, as
suggested in [9]. Before further comments on the H-tree,
a brief introduction to basic concepts of a tree-based data
structure is summarized for clarity [10]:

1) A tree is an acyclic connected graph in which all nodes
have one parent node except for the top node (called
root). Trees are usually drawn growing downwards.

2) All nodes have zero or more children nodes. Nodes that
have no children are called leaves.

3) The degree of a node refers to the number of children
of a node.

4) Any node can be reached following a unique path from
the root node. The path is composed of edges or links.

5) The depth of a node is the length of the path that goes
from the root to the node. The height of the tree refers
to depth of the deepest node in the tree.

6) A balanced tree is a tree whose leaves are all located at
the same depth.

As we shall show, the H-tree builds on the R-tree [11], that
is, the H-tree is a geographic tree-based data structure. The
R-tree is a balanced tree that uses rectangular shapes to quickly
index geographical coordinates. Objects that are close to each
other are grouped and represented by means of a bounding
rectangle. Each node in the tree refers to a rectangle. A leaf
node’s rectangle refers uniquely to an object. The higher levels
contain the aggregation of the lower levels.

The H-tree in FootSLAM is actually composed of two sub-
structures: The Global H-tree (one per FootSLAM estimation
process) and the Dynamic H-tree (one per particle). As we
shall explain, the choice of such decomposition avoids the
computational cost of rebalancing the Dynamic H-trees during
the mapping process - as opposed to [9], where only the
dynamic structures are present.

Both global and dynamic trees have in common the follow-
ing characteristics:
• The maximum degree of all internal nodes is s.
• The tree is balanced: all leaves are located at the same

depth.
• The height of the tree is height = logsNh, being Nh

the number of hexagons in the grid (Nh is adjusted to be
a power of s or s is adjusted to be a root of Nh).

• Generating and accessing a partial tree (e.g., the path to
a leaf) can be done in time O(logsNh) = O(lgNh).

• Each leaf refers unambiguously to a hexagon in the grid.
In the following subsections, the Global and the Dynamic

H-tree are presented in more detail.

A. The Global H-tree

The Global H-tree is a tree-based data structure that exists
once and only once per FootSLAM estimation process. It is
in charge of the storage and representation of all hexagons
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Fig. 1. Construction of the Global H-tree: Given the hexagon grid depicted
on the left - composed of Nx = 4 columns and Ny = 4 rows, the resulting
Global H-tree using a degree of s = sx · sy = 2 · 2 = 4 is shown on the
right. Whereas the root of the Global H-tree refers to all Nh = 16 hexagons
in the grid (marked in blue), each node one level below refers to a group of
hexagons s = 4 times smaller (e.g. the green node refers to hexagons number
1, 2, 5 and 6, and the red node refers only to hexagon 1). The hexagons are
stored at the leaf level.

in the grid: The Global H-tree stores only geographic-related
information (hexagons coordinates). Similarly to the R-tree,
objects (the hexagons) are stored at the leaf level of the tree.
The path to each hexagon is stored in a Hash table:

paths = {h, path}; ∀h ∈ Nh,

allowing quick indexing of hexagons and paths to each
hexagon in the tree when a particle accesses its map.

The grid of Nh hexagons is composed of Nx columns and
Ny rows. All internal nodes in the Global H-tree have the same
degree s, i.e. all nodes are full. At the leaf level there exist
Nh nodes, each one holding one hexagon. Higher level nodes
refer to a greater number of hexagons (Figure 1). In contrast
to [9], where the tree-based data structure has no geographical
meaning, the Global H-tree groups hexagons that are nearby.
This will have a significant impact when building the Dynamic
H-tree for each particle, as we shall see.

The degree of the nodes can be decomposed into two com-
ponents: sx and sy , with the following geographical meaning:
Nodes located at level l = (height − 1) refer to groups of
sx columns of sy hexagons. Figure 1 depicts an example for
Nh = 16 and s = 4.

As stated before, Nh is adjusted to be a power of s or s to
be a root of Nh. In order for the Global H-tree to be perfectly
balanced and full, Nx must be a power of sx and Ny a power
of sy for all nodes to have exactly s children. We choose
Nx = Ny and sx = sy so that the only condition that must
apply is Nh to be a power of s.

For the structure to become a tree, sx = sy ≥ 2, i.e. s ≥ 4.
Furthermore, the degree of the nodes is upper bounded by the
number of hexagons in the grid, so 4 ≤ s ≤ Nh.

In addition, the number of nodes Nn in the Global H-tree
can be computed as follows:

Nn =

logs Nh∑
k=0

sk =
slogs Nh+1 − 1

s− 1
=
s ·Nh − 1

s− 1
. (8)
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Fig. 2. Construction of a Dynamic H-tree for one particle: On the left side
the hexagons visited by the particle are shown. On the right, its corresponding
Dynamic H-tree. The paths that lead to each hexagon have been copied from
the Global H-tree shown in Figure 1. At the leaf level, not only the visited
hexagons are stored, but also their corresponding HTC.

Important considerations when choosing s are:
• The greater the s, the fewer the nodes. This can be

directly translated into less memory requirements.
• The greater the s, the shallower the tree. Since accessing

and generating a partial tree has a cost in time (logsNh),
the lower the access time is.

• As shall be shown, the greater the s, the longer the run-
time of the resampling step when using the H-tree.

B. The Dynamic H-tree

Each one of the Np particles in the particle filter builds
its own (sparse) Dynamic H-tree based on the aspect of
the Global H-tree (the relative position between the nodes
and links that lead to the hexagons). The main difference
with respect to the Global H-tree is that the Dynamic H-tree
also stores HTCs (hexagon transition counters) of the visited
hexagons.

The first time the particle visits a hexagon, the path to the
hexagon is obtained from the table of paths of the Global
H-tree and the corresponding nodes that lead to the hexagon
are copied into the Dynamic H-tree. If the particle revisits a
hexagon, the Global H-tree is only needed to retrieve the path
to the hexagon in the Dynamic H-tree. Figure 2 illustrates an
example for a particle that has visited five hexagons.

In contrast to [9], using the Global H-tree as a reference,
there is no need to rebalance the Dynamic H-trees when new
hexagons are stored. Nevertheless, this approach still allows
for occasional redefinition of the trees, if we need to extend
the mapping area, for instance: The number of hexagons in the
grid is incremented, the Global H-tree is rebuilt accordingly
and the Dynamic H-trees are restructured based on the new
Global H-tree.

We have stated that each particle owns a dynamic tree. We
shall see that some parts of a Dynamic H-tree (subtrees) can
be shared by particles that have a common history of visited
hexagons. This is the strength of the H-tree and it is further
explained in the next subsections within the context of the
resampling and update steps of the FootSLAM algorithm.

C. Resampling Step in the Dynamic H-tree

As explained above, at the resampling step a set of N ′p parti-
cles is generated from the existing Np particles based on their
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Fig. 3. Resampling in the H-tree: Two resampling particles RP1 and RP2

resample from a parent particle PP by copying the pointers of its Dynamic
H-tree root-node. RP1 and RP2 share the common hexagon map depicted
on the left.

weights. A naive approach duplicates the state information for
all the particles that resample from a parent particle, as we
showed with the Hash table (Section III-B2).

The H-tree allows to use another approach whereby all
resampling particles share the information from the parent
particle, avoiding duplicity of information: Equivalently to [9]
a resampling particle can be copied from a parent particle by
merely copying its Dynamic H-tree root-node pointers (max-
imum s). Figure 3 illustrates this concept for two resampling
particles RP1 and RP2 that sample from a parent particle PP .

Operating in this manner, the resampling part of the al-
gorithm does not depend on the number of visited hexagons
by each particle, but on the degree of the H-tree s, which is a
constant value. The lower the s, the shorter it takes to perform
resampling.

D. Update of Hexagon Transition Counters in the Dynamic
H-tree

When two or more particles resample from the same parent
particle, they share the same nodes and the same visited
hexagons with their corresponding HTCs (hexagon transition
counters). If one of these particles needs to update the HTC of
a hexagon, then the path leading to it needs to be duplicated
(with replacement) [9]. Duplicating a path means duplicating
its nodes and links. Figure 4 shows an example for particles
RP1 and RP2.

As stated above, accessing or updating a leaf has a logarith-
mic cost O(lgNh). In contrast to naive FootSLAM, the update
step using the H-tree shows a dependency on the number of
hexagons in the grid Nh.

E. Complexity Analysis

The advantage of using the H-tree is that instead of dupli-
cating the entire tree when resampling, only those paths that
refer to a new or revisited hexagon need to be duplicated.

The resampling step requires always constant time, since it
depends only on the degree of the tree s:

T res
k (t) = O(1).

Nevertheless, the update step requires time logarithmic in
the number of hexagons in the grid Nh, which can be dynami-
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Fig. 4. Update step in the Dynamic H-trees: After the resampling step, RP1

exits hexagon number 11 and revisits hexagon number 6. These hexagons’
HTCs are common to particle RP2 and cannot be directly updated. Instead, the
paths that lead to them must be duplicated before the update to avoid changing
the map of particle RP2. Particle RP2 visits a new hexagon (number 15) and
needs to copy some of the nodes to avoid adding visited hexagons to RP1.
On the left, the common map to both particles after the update. On the right,
the map that each particle possesses.

cally incremented over time to meet the mapping requirements:

Tupd
k (t) = O(lgNh) = O(lg t).

Hence, the new bottleneck of the FootSLAM algorithm is
located at the update step and consequently, the run-time of
H-tree FootSLAM is bounded by:

TFS(t) = O(t lg t).

Note that this analysis corresponds to our envisioned im-
plementation of large-scale FootSLAM whereby the number
of hexagons in the grid Nh can be increased dynamically to
allow the mapping of larger areas.

However, in our current H-tree implementation Nh remains
constant through the whole FootSLAM estimation process
and the Global H-tree is built according to it. In this case,
FootSLAM requires linear time, given that the lg t factor is
fixed by the constant height of the tree over time.

F. Memory Savings

A further advantage of using a tree-based data structure
is the savings in memory, visible between resampling steps.
When resampling, N ′p new unique particles are generated from
the old set of Np particles by copying the pointers of the
parent particle’s root-node. If on average X particles are drawn
from a given particle, then we experience a 1/X reduction in
memory since we can reclaim the memory occupied by the
obsolete particles. In the limit, when all particles resample
from one single surviving particle, we experience a ratio of
1/Np savings in memory. Note that these memory savings are
relative to the previous resampling step.

Figure 5 illustrates this idea over 4 resampling steps. At each
resampling step some hypotheses are erased (marked with a
cross) and memory is deallocated.

The reason for using a geographic approach for the H-tree is
even clearer at this point: We live and work in buildings where
large, unvisited spaces are rare. Therefore, our geographically
defined Dynamic H-trees for a completed FootSLAM map
will tend to become densely populated, except for perhaps the
last (meter level) nodes. The underlying assumption which
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Fig. 5. On the top, particles’ hypotheses lifetime: Five different particles Pi

are initialized at time step k = 0. At resampling time step k = 1, particle
P1 and P2 resample from particle P1. P2 previous hypothesis is erased,
marked with a cross. Likewise, particles P3, P4 and P5 resample from P5.
At resampling time step k = 2, all particles are resampled from P3. The only
surviving hypothesis is that of P3. On the bottom, the surviving history of
hypotheses for the five particles is shown. At k = 2 the memory requirements
have been reduced 5 times with respect to k = 1.

we believe justifies this is that for a given area, human
accessibility is more or less uniform, except for meter level
granularity.

If we assume that the space accessible to a pedestrian is not
randomly distributed, but consists of groups of accessible areas
(hexagons, in our case), then a geographic tree-based data
structure will lead to a lower number of nodes needed in each
Dynamic H-tree. Our Global H-tree is built grouping hexagons
that are nearby. Thus, visiting surrounding hexagons between
two resampling steps translates into very local changes in
the Dynamic H-trees. Only the nodes at the lower levels,
i.e., a subpath, need to be generated. For example, suppose
that particle RP2 in Figure 4 visits hexagon number 16 after
hexagon number 15. Then, adding hexagon 16 to the tree
requires only adding one extra leaf node. As a consequence,
in average less memory needs to be allocated than in the case
in which hexagons are randomly stored at the leaf level.

V. COMPACT REPRESENTATION OF HEXAGON
TRANSITION COUNTERS

Using concepts of source coding and lossless data compres-
sion [12], we can encode the different combinations of tran-
sition counts that the counters of an HTC (hexagon transition
counters) can take on for any hexagon h. This codification is
a compact representation (alphabet) for the set of transition
counters across the edges of the hexagons.

The alphabet can map up to T transitions per edge. There-
fore, there are (T + 1) possible values (to account for 0
transition counts) for the six counters to adopt and repetition
is allowed. Hence the alphabet A is composed of S = (T+1)6

symbols. The first symbol A0 and last symbol AS−1 of the
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Fig. 6. Example of symbol transitions given symbol A0 ↔ {0, 0, 0, 0, 0, 0}.
Given a transition across any of the edges, the next possible symbols have
been precomputed.

alphabet correspond, respectively, to:

A0 ↔ {0, 0, 0, 0, 0, 0}
AS−1 ↔ {T, T, T, T, T, T}

Similarly to the Global H-tree, this alphabet is constructed at
the beginning of the FootSLAM estimation process and exists
only once. The alphabet is particularly effective during the
exploration phases of FootSLAM that requires much particle
diversity. As it shall be explained next, it will help reduce
FootSLAM memory requirements.

1) Memory Savings: The alphabet is used to avoid storing
the full HTC of the hexagons that the particles visit. Instead,
the symbol corresponding to the HTC is stored at the leaf level
of the particle’s Dynamic H-tree.

The HTC data structure consists of a vector of length six.
In our Java implementation it has been constructed using an
array of six Byte values, which requires 24 Bytes. On the other
hand, each alphabet symbol is represented by a Short value,
which requires only 2 Bytes.

Nevertheless, one should note that once a particle enters
or leaves a hexagon across an edge whose counter had
registered the maximum number of transitions, T , the symbol
is converted back to an array of Bytes (HTC). The particle’s
Dynamic H-tree will then store the full HTC for that hexagon.

2) Efficient Map Updates: Say a particle is located at
a hexagon whose associated set of transition counters Mj

corresponds to symbol Aj . The particle can leave the hexagon
using any of the six edges. The particle can update the symbol
by:

• Retrieving the corresponding Mj of symbol Aj .
• Updating Mj given the transition across edge e: Mj→e

as explained in Section II-C.
• Obtaining the symbol Aj→e that corresponds to the

updated HTC Mj→e, if it exists.

However, for efficient map updates, for each alphabet sym-
bol Aj the six next possible symbols Aj→e∀e are precomputed
and stored during the construction of the alphabet. Figure 6
represents an example for symbol A0.

Operating in this manner, the update of a symbol requires
only to know which edge was crossed when leaving the
hexagon, avoiding explicit conversion to an HTC.

During exploration phases, when particles are visiting new
hexagons and there exists much diversity of hypotheses, mem-
ory requirements grow with the visited area. The alphabet will
play a significant role during those phases, reducing the rate
of growth of the memory requirements.
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VI. STORAGE OF DIVERSITY

This section presents an introduction to a possible approach
to store particle’s diversity when mapping large areas, yet to
be implemented and tested.

The dimension of a FootSLAM map grows as more and
more places, floors and rooms are visited. Two problems arise
with a growing map. First, the total map size is constrained
due to memory limitations. The second problem is a diversity
loss of the particles over long trajectories.

As described in [13] a particle filter tends to loose diversity
of hypotheses for those areas that are far away in time. The
reason is the resampling process, where locally good particles
are duplicated and weak particles are erased. This causes
particle depletion in areas that had been previously visited,
since the resampling process eliminates hypotheses that were
valid in the previous locations. Thus, particles’ estimates and
their diversity for those areas should be conserved or frozen
and independent of a future resampling. In order to solve the
short-term memory limitation problem and the diversity loss,
parts of a map can be compressed and stored in a different
structure.

In [14] an approach is presented to combine multiple maps
of particles to one Gaussian map representation as soon as the
specific part of the map is out of view. In FootSLAM, each
particle holds information regarding the hexagon it visits and
their corresponding HTCs (hexagon transition counters). This
information can be effectively compressed in one cumulative
map, which combines the information of all particles (Equa-
tions (5) and (6)).

Figure 7 illustrates the processes of storing and restoring
a part of the map. The particles’ maps are compressed into
a cumulative map, removed from the Dyamic H-trees and
saved into long term memory. When revisiting the area,
the cumulative map is selected and used as prior map for
FootSLAM, as described in [6] Section 2.

Now the challenge is to determine the moment in time for
the storage of certain areas of the map. A map area which
is far away from the actual pose and exceeding a certain
defined distance can be selected as soon as that distance
is reached. The distance should be chosen carefully, as the
particle filter needs sufficient space for different hypothesis
to resolve ambiguity. Another option is to use a logical
separations between buildings or even floors. If an absolute
position measurement (e.g. GPS, RFID tag, radio positioning)
is available between buildings, the map can also be divided.
Another option is a non-automated, manual separation from
the user by signaling as soon as an area or building is left.

VII. EXPERIMENTAL VERIFICATION

A. Methodology

To evaluate the performance of FootSLAM, a pedestrian
undertook a walk that lasted over 13 minutes using an IMU
sensor located on his foot to measure his steps. FootSLAM
has been specifically developed to map indoor environments.
Nevertheless, this walk was undertaken outdoors covering a

𝑁𝑝 maps  
from a given area 

cumulative 
map 

… 

prior map 

FootSLAM 

store 

compression 

restore 

cumulative 
map 

Fig. 7. Storing and restoring processes used to avoid losing diversity of
hypotheses in the particle filter. The existing Np maps from a given area (on
the top) are compressed into a cumulative map, which is stored into disk.
The particles’ maps are erased from memory. When the particles revisit that
same area, the cumulative map is retrieved from disk and used as a prior map
during the FootSLAM algorithm to guide the particle’s trajectories and help
the convergence of the algorithm.

relatively large area (ca. 100m by 100m) to show the behavior
of FootSLAM during the exploration phase.

The recorded data, after being processed by a lower-level
Unscented Kalman Filter (UKF), were used as input for Foot-
SLAM. The UKF output data - called odometry data (Figure
8(a)) - were processed offline by FootSLAM using Np =
30000 particles and a grid of Nh = Nx ·Ny = 256 · 256
hexagons. Figures 8(b) and 8(c) show the FootSLAM maps
corresponding to the odometry data. Clearly, FootSLAM was
able to correct the drifting errors visible in the odometry data.

In the following we will use the term naive FootSLAM to
refer to the implementation of FootSLAM of Section III-B and
H-tree FootSLAM for the complexity-reduced implementation
based on the H-tree. Naturally, the resulting map is the same
no matter which approach is used.

The maximum number of mapped transitions by the alpha-
bet, T , and the degree of the nodes in the Global H-tree,
s, are varied and the performance of FootSLAM is studied
accordingly.

FootSLAM has been implemented on a Java platform. In the
following subsections, the constraints that the implementation
presents for T and s are explained.

1) Maximum Number of Mapped Transitions by the Alpha-
bet: We represent alphabet symbols by means of a Short type,
which in Java covers a range of (232 − 1) possible values.
Consequently the number of symbols in the alphabet S is
bounded by this value and the maximum value that T can
take on is: T = blog6(232 − 1)c − 1 = 5. From the moment
when a particle has crossed one of the edges of a hexagon
more than 5 times, the symbol is converted to HTC.
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(a) Odometry

(b) Maximum a posteriori map (c) Cumulative map

Fig. 8. Odometry recorded during the walk (Figure (a)) and FootSLAM
output maps: map corresponding to the maximum a posteriori hypothesis
(hypothesis of the heaviest particle in the particle filter) for the history
of pedestrian’s poses (Figure (b)) and cumulative map with the aggregated
information of all particles (Figure (c)).

2) Limit for the Degree of the Nodes: We use a Byte
representation for the links of each node, so we must limit
the degree s of the nodes to be 255 or fewer. Applying all
conditions stated in Section IV-A, the only two values we can
use for the H-tree are: s = 4 and s = 16.

Note that we have chosen to encode the path using a vector
of Byte values due to the considerable amount of paths to
be stored (Nh) when the Global H-tree is generated. Using a
Short type or an Integer type is also possible if the available
memory allows it.
B. Results

In this section we present the performance of naive Foot-
SLAM and H-tree FootSLAM both relative to time and
memory requirements.

1) Time Performance: Figure 9 shows the measured time
performance of naive FootSLAM (red curve) and H-tree
FootSLAM for two different degree values: s = 4 (pink line)
and s = 16 (blue line for T = 5 and green line for T = 0,
which are overlapping).

Our experiment results are consistent with the theoretical
analysis of FootSLAM: Naive FootSLAM shows a quadratic
in time complexity growth rate (the dashed cyan curve corre-
sponds to the best quadratic-fitting curve). On the other hand
and as discussed in Section IV-E, H-tree FootSLAM requires
time in t lg t, which for a fixed number of hexagons in the
grid Nh, results in linear time complexity growth rate.

The use of a tree-based data structure like the H-tree
shows a clear advantage over the previous naive FootSLAM
implementation. After ca. 400 seconds, naive FootSLAM is
not able to perform in real-time. On the other hand, the time
requirements of H-tree FootSLAM stay always under the real-
time processing limit (black line).
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Fig. 9. Measured run-time of the FootSLAM algorithm for the walk depicted
in Figure 8 for different FootSLAM implementations: naive FootSLAM (red
curve) and H-tree FootSLAM (dash-dotted pink line, blue line with cross
markers and green line with circle markers). Real-time processing is depicted
by a black line diamond markers. The dashed cyan curve represents the best
fitting quadratic curve to the performance of naive FootSLAM.

The use of different values for the degree of the nodes gives
the same order of complexity growth rate (linear times log),
but changes the speed of growth (the slope). In this case,
a greater degree value (blue and green lines) improves the
performance of H-tree FootSLAM. Such result does not imply
that the performance will always improve for a greater degree
value: A greater s will also slow down the resampling step.

Unsurprisingly, using the alphabet does not improve the
performance in terms of run-time: for T = 0 (no alphabet)
and T = 5 the performances are practically the same (the blue
and green line overlap). Our approach of storing the possible
symbol transitions (Section V-2) has allowed the alphabet-
based implementation to maintain the speed of the update
step of the implementation with no alphabet. The advantage of
using the alphabet is visible in terms of memory requirements,
as we shall show next.

2) Memory Performance: Figure 10 depicts the measured
memory performance of naive FootSLAM (red curve) and
H-tree FootSLAM for two degree values, s = 4 (pink curve)
and s = 16 (blue and green curves). The sawtooth shape of the
curves are due to the memory deallocation process executed
by Java’s garbage collector.

As argued at the end of Section IV-F, H-tree FootSLAM
performs better than naive FootSLAM in terms of memory.
This is visible in Figure 10 since the highest memory require-
ments of H-tree FootSLAM correspond to ca. 3750MB (green
curve, s = 4), whereas naive FootSLAM highest memory
requirements correspond to ca. 8000MB.

As expected, given a fixed maximum number of mapped
transitions (T = 5), the memory performance of H-tree
FootSLAM for s = 16 (blue curve) improves that of H-tree
FootSLAM with s = 4 (pink curve). This is because the
number of nodes that need to be generated to insert all
visited hexagons is lower for a greater degree value (Equation
(8)). The improvement is visible at the lower peak memory
requirements and at the slower rate of growth of memory
allocations (a less steep slope of the saw tooth).

On the other hand, given a degree value of s = 16, the use of
the alphabet (blue curve) improves the memory performance of
the H-tree implementation without an alphabet (green curve).
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Fig. 10. Measured memory performance of naive FootSLAM (red curve)
and H-tree FootSLAM with degree values s = 4 (dash-dotted pink curve)
and s = 16 (green curve with circle markers (T = 0) and blue curve with
cross markers (T = 5)).

VIII. CONCLUSION AND OUTLOOK

FootSLAM or simultaneous localization and mapping
(SLAM) for pedestrians is a technique that addresses the in-
door positioning and mapping problem based on human odom-
etry (aka pedestrian dead reckoning), e.g. with a foot-mounted
inertial sensor. FootSLAM builds on a Rao-Blackwellized
Particle Filter in which each particle holds its own history
of pedestrian’s poses and map estimates. To that end, the 2D
space has been divided into a grid of uniform and adjacent
hexagons.

In this paper the complexity of a naive FootSLAM imple-
mentation has been studied. The resampling step represents
the bottleneck, showing a linear dependency with the covered
area per time step. Such dependency makes FootSLAM exhibit
a quadratic-in-time complexity growth rate that prevents real-
time processing.

A new geographic tree-based data structure, called the
H-tree, has been introduced to reduce FootSLAM’s compu-
tational growth rate in time from quadratic to linear times
logarithmic.

The H-tree consists of two substructures: one Global H-tree
per FootSLAM estimation process and one Dynamic H-tree
per particle. The Global H-tree is a predefined structured used
as a reference to build the Dynamic H-trees, thus avoiding
the computational cost of rebalancing the trees when new
hexagons are visited. Furthermore, both H-tree substructures
are geographic-based, which helps control the growth in the
number of nodes needed in the Dynamic H-trees.

The main advantage of using the H-tree is visible at the
resampling step, now independent of the number of hexagons
visited by the particles. The cost of using this structure
is present at the update step of the particle filter, with a
logarithmic cost per time step.

In addition, an alphabet of symbols has been introduced
to compactly represent map estimates (hexagon transition
probabilities) by the particles. The alphabet reduces the mem-
ory requirements of FootSLAM especially during exploration
phases in which much particle diversity of hypotheses is
needed.

We have validated the computational savings of the H-tree
and alphabet-based FootSLAM implementation with respect
to a naive FootSLAM implementation, both in terms of time

and memory consumption. Our experiments show that the
new implementation is suitable for mapping and positioning
applications with real-time requirements. Furthermore, the
reduction in complexity will allow FootSLAM to use more
particles when mapping large areas, thus helping the accuracy
of the algorithm. In our view these results are the first
step towards efficiently undertaking the mass market offline
mapping process.

Current work is focusing on the extension of the H-tree and
the alphabet to allow real-time processing of FootSLAM in 3D
environments.

Further work should target the possibility of increasing the
number of hexagons in the grid Nh as required by the walk
itself. Such increase would need reshaping the Global H-tree
and the Dynamic H-trees of each particle, but would allow for
self adaptability to the the environment and mapping of larger
areas when needed.

Further research should also address the quantification of
FootSLAM accuracy.
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