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Abstract—When appropriate infrastructure is not available,
localization of pedestrians becomes a difficult task. This is
especially the case in urban or indoor scenarios, where satellite
navigation is hindered due to occlusions or multipath effects.
A promising alternative is to combine a small, low-cost IMU
with a camera in order to exploit the complementary error
characteristics of these devices by simultaneously estimating the
positions of observed landmarks and the trajectory of the sensor
system with a stochastic filter.

In this work, a standard approach to parameterize the error in
position and attitude estimates that is commonly used in GNSS-
INS integration is compared to alternative parameterizations that
are based on the twist representation of rigid body motions, which
has gained increasing popularity in the literature. For this pur-
pose, the error-state transition and measurement equations are
formulated for the twist representation as well as for the standard
approach. Finally, the different approaches are compared on a
simulated and a real indoor dataset by applying an extended
Kalman filter (EKF).

I. INTRODUCTION

A. Pedestrian navigation and visual SLAM

When operating in extended indoor environments, first re-

sponders strongly depend on their ability to reliably localize

themselves in order to successfully accomplish their task. This

is especially true when a team of first responders that is scat-

tered over the environment has to perform a concerted action.

In such a situation, a system that improves the situational

awareness by displaying the locations of team members on

a map would be very helpful.

Unfortunately, satellite navigation signals are usually not

available or severely disturbed in urban scenarios due to

occlusions or multipath effects. This motivates the research in

alternative localization systems like Honeywell’s GLANSER

system [1], where utra-wideband radio signals are used to

measure the distance to stationary anchor nodes, which have

to be installed in advance at the site of operation.

Systems that do not depend on such external infrastructure

are inevitably subject to an increasing error because they

essentially perform dead reckoning, i.e., each position estimate

depends on previous position estimates. An inertial measure-

ment unit (IMU) is an example of a dead reckoning system

because it measures acceleration and angular velocities which

yield an estimate of the displacement of a sensor system when

integrated. Since IMUs which offer the accuracy that is needed

to obtain position estimates for extended periods of time with

reasonable accuracy are both expensive and bulky, it seems

promising to consider a combination of a low-cost IMU with a

camera which compensates for the rapidly accumulating errors

in the position estimate obtained by integrating the IMU’s

measurements by observing stationary landmarks in the video

images. The different kinds of measurements obtained thereby

are usually fused by applying a stochastic state estimator

in order to estimate the trajectory of the combined camera-

IMU system and the locations of the observed landmarks

simultaneously, a problem that is commonly referred to as the

simultaneous localization and mapping (SLAM) problem.

B. Contribution

This work compares different approaches to parameterize

the sensor’s attitude and position in an inertial aided visual

SLAM system using an extended Kalman filter to estimate

the SLAM state. More specifically, a parameterization that

is commonly used for GNSS-INS integration which treats

position and attitude errors separately is compared to alter-

native parameterizations where position and attitude errors

are subsumed in a screw motion parameterized by an error

twist. For this purpose, it is shown how the time prediction

and covariance propagation equations for the error twist may

be formulated. The observations reported in this work also

pertain to alternative estimation techniques which also rely on

a linearization of the motion and measurement models.

II. RIGID BODY MOTIONS

This section reviews the basic concepts that are needed for

the description of rigid body motions. Most of the material

presented here can also be found in [2], [3].

In this work the term pose refers to the position and attitude

of a rigid body. The pose of a rigid body is commonly

specified in terms of a coordinate transformation that converts

the coordinates of points given in a coordinate system that

is attached to the body into the coordinates of a fix reference

coordinate system. Mathematically, these transformations form

a group: The special Euclidean group SE(3) whose elements

are the isometries of three-dimensional Euclidean space. More

specifically, SE(3) is the semi-direct product of the special

orthogonal group SO(3), whose elements represent rotations

about the origin in three-dimensional space, and the three-

dimensional vector space R
3. The group operation is given
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by the concatenation of coordinate transformations and the

inverse of a group element is given by the inverse coordinate

transformation. In practice, the elements of SE(3) are often

given as 4× 4 homogeneous matrices

T b
a =

[

Cb
a

bpa

0 1

]

. (1)

where Cb
a ∈ SO(3) is a rotation matrix and bpa ∈ R

3

is the position of frame a in the coordinates of frame b.
However, the parameterization with homogeneous matrices is

an overparameterization since the pose of a rigid body can be

specified with six parameters. In addition, care has to be taken

to retain the orthogonality of the rotation matrix Cb
a. Therefore,

alternative parameterizations for the group elements of SE(3)

are often suggested, especially in least-squares problems or

filtering applications.

1) Twists: Fig. 1 illustrates two ways to describe the dis-

placement of a coordinate system that is attached to a rigid

body, which is moving with angular velocity bωωω and velocity
bv, both given in the body’s coordinate system. While in

Fig. 1a the displacement is interpreted as a translation of

the origin along a straight line and a separate rotation, the

same displacement may be described by a screw motion which

consists of a displacement d along a screw axis and a rotation

about that same axis as shown in 1b. According to Chasles’s

theorem, any proper rigid body motion that is not a pure

translation can be described by such a screw motion, cf. [2].

This is the basis for the twist or screw representation of rigid

body motions in terms of six-parameter vectors

t =
[

ωωωT ξξξT
]T

(2)

where ωωω is the screw axis and ξξξ is another three-component

vector that encodes the position of the screw axis and the

amount of displacement along the screw axis. The norm of

the screw axis is just the corresponding angle of rotation. In

case of a pure translation, the screw axis vanishes and ξξξ is

replaced by the translation vector.

2) Lie groups and Lie algebras: The importance of the twist

representation becomes apparent when the geometric proper-

ties of the matrix group SE(3) are taken into account. The

group elements T ∈ SE(3) form a continuous, differentiable

manifold with the group operation and the inversion of group

elements acting as differentiable mappings on the manifold.

Such groups are also called Lie groups. For any path T (s) in

the Lie group that passes through the identity, i.e., T (0) = I ,

the derivatives at the identity d/dsT (s)|s=0 are matrices that

belong to a vector space, i.e., the tangent space at the identity

element. The matrix commutator of two elements X,Y yields

a binary operation on the tangent space:

[X,Y ] = X · Y − Y ·X (3)

This operation is called Lie bracket and the tangent vector

space augmented with this operation forms a Lie algebra. The

Lie bracket is linear in both of its arguments. Thus, fixing
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Fig. 1. Two ways to describe the displacement of a rigid body moving with
velocity b

v and angular velocity b
ωωω. Tn

b
denotes the coordinate transformation

from the body coordinate system to the navigation frame. (a) Separate
translation and rotation (b) Screw motion with displacement d and angle

∥

∥

b
ωωω
∥

∥

about the screw axis ωωω.

the first argument yields a linear map on the Lie algebra, the

adjoint representation of the algebra:

adX(Y ) = [X,Y ] (4)

In case of the group SE(3) its algebra is written as se(3)

and its elements are given by the twists that describe the screw

motion. The twists can be identified with the matrices that form

the tangent space of SE(3) at the identity by the following

mapping:

Sωωω,ξξξ =

[

⌊ωωω⌋
×

ξξξ
0 0

]

(5)

Where ⌊v⌋
×

is the skew-symmetric cross-product matrix

associated with a vector v.
3) The exponential map: The elements of the Lie algebra

can be mapped to the elements of its corresponding Lie group

by means of the matrix exponential:

T (S) = exp(S) =
∑

∞

k=0
Sk

k!
(6)



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

For a constant element S ∈ se(3) and a parameter t ∈ R

the exponential map defines a curve

T (t) = exp(St) (7)

on SE(3) whose elements form a one-parameter subgroup.

These curves are the solutions of the differential equation

dT (t)
dt

= T (t) · S (8)

and S can be interpreted as the body-velocity if t is the

time. On compact Lie groups the curves given by (7) have an

additional desirable property: They are the unique geodesics

through the identity and thereby the shortest paths between the

identity element T (0) and T (t) on the Lie group w.r.t. a given

Riemannian metric. However, as pointed out in [4] this is not

true for general non-compact Lie groups like SE(3) where the

notion of distance and shortest paths is complicated by the

lack of a bi-invariant Riemannian metric.

4) Lie algebra in optimization problems: The properties

presented in the previous sections motivate the parameteriza-

tion of Lie group elements in terms of vectors in the corre-

sponding Lie algebra in filtering and optimization problems.

The general approach is as follows: In order to estimate the

true value M of a Lie group element, one starts with an initial

estimate M̂ that is related to the true value by a multiplicative

error M = M̂ · exp(S) or M = exp(S) · M̂ . Then some

objective function that depends on the Lie algebra element S
is optimized. The resulting estimate Ŝ is finally used to correct

M̂ according to the multiplicative error function. Thereby it

is possible to work with elements of a vector space (the Lie

algebra), which can be added and multiplied by scalars in the

usual way, while still preserving the geometric properties of

the underlying manifold. In this way, the Lie algebra provides

local coordinates for the Lie group nearby the estimated state.

III. RELATED WORK

A number of different approaches to represent rigid body

motions can be found in the computer graphics and robotics

literature. For instance, Dorst suggests the use of the conformal

model of geometric algebra in order to represent Euclidean

motions [5]. In contrast to homogeneous coordinates, which

require different representations of Euclidean motions to move,

e.g., points and lines, this allows for a unified treatment of mo-

tions for different geometric objects. The use of screw motions

is suggested to interpolate between rigid body motions, but it

is noted that no interpolation scheme can cope with changes

in the body frame and the world frame simultaneously. As an

explanation, it is stated that no bi-invariant metric exists on

SE(3) that is invariant under moving world as well as moving

body frame, as stated in [4].

However, despite the absence of a bi-invariant metric on

general non-compact Lie groups like SE(3) it was shown by

Mahony et al. that the Newton algorithm displays quadratic

convergence when formulated in terms of the local coordinates

provided by the Lie algebra [6].

Wu et al. derive the kinematic equations for the dual quater-

nion representation of rigid body motions for a strapdown

inertial navigation system with highly accurate measurements

[7]. In their work, the focus is on accurate integration of

inertial measurements and not on sensor fusion. Therefore, the

propagation of the uncertainty associated with pose estimates

is not described. They give a differential equation to propagate

a screw vector during minor time intervals, which is used

to update the dual quaternion estimate of the sensor’s pose

regularly.

In textbooks on GNSS-INS integration, the error model for

the IMU’s pose often comprises an additive position error

and a multiplicative attitude error, thereby treating errors in

position and attitude separately and not as elements of the Lie

algebra se(3), c.f. [8]. Jones et al. use this approach to describe

pose error in their inertial aided visual SLAM system, where

an EKF is used to estimate the state [9]. They derive the

equations for the time prediction step starting from the body

velocity differential equation (8) and end up with a motion

model where the velocity is given in the reference frame as it

is also described in [8]. In order to improve the observability

properties of the state to be estimated, they include the gravity

vector in the filter’s state and estimate the pose of the sensor

system w.r.t. the first sensor pose.

A similar parameterization is chosen by Lupton for a graph-

based optimization approach to the integration of inertial and

visual measurements [10]. Here, the errors in attitude and

position are also treated like independent entries in the state

vector and the system’s pose is estimated relative to the very

first pose with the direction of the gravity vector included in

the state.

Recently, another visual-inertial system based on a factor

graph formulation of the SLAM problem was presented by

Indelman et al. [11]. The authors claim to use a Lie algebra

formulation when estimating the sensor’s trajectory, but the

state prediction equation that relates the IMU’s measurements

to consecutive sensor poses is not given explicitly.

While applications of the Lie algebra seemingly are rare

when it comes to the integration of inertial and visual mea-

surements, a number of authors exploit the Lie algebra formu-

lation in connection with pose graph optimization or bundle

adjustment methods that do not require a sophisticated motion

model.

For instance, Agrawal exploits the Baker-Campbell-

Hausdorff equation that operates on elements of the Lie algebra

to formulate a measurement equation that relates adjacent

poses to pose-pose constraints, which were derived by visual

odometry with a stereo camera system [12]. This approach

enables to express poses as well as pose-pose constraints as

elements of the Lie algebra se(3), thereby allowing for an

elegant formulation of the optimization procedure.

Strasdat et al. present a visual SLAM approach that is

based on an efficient bundle adjustment implementation and

a graphical interpretation of the dependencies between state

variables [13]. By default, camera pose errors and pose-pose
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constraints are represented by elements of se(3). However,

when closing large loops with a monocular camera the camera

poses are are represented by similarity transformations, where

one parameter contains a local scale factor and the errors

belong to the corresponding Lie group sim(3).

A bundle adjustment framework for SLAM that allows

to compare different parameterizations to represent poses is

presented in [14]. The authors report improved convergence

properties of the iterative minimization procedure when cam-

era pose errors are parameterized as Lie algebra elments as

opposed to a parameterization by independent rotation and

translation vectors.

IV. EKF-SLAM FORMULATION

A. Preliminaries

The following sections present the EKF-SLAM formulation

that was used for the comparison of different pose error pa-

rameterizations presented in sec. V. The overall objective is to

estimate both the pose of the IMU’s body coordinate frame {b}
and the locations of observed landmarks w.r.t. the navigation

frame {n}. The navigation frame is a fix coordinate system

with its x- and y-axis aligned with the north and east directions

and the z-axis aligned with gravity. However, in order to reduce

the effects of linearization errors, an intermediate strapdown

coordinate system {s} is employed, following [10] and [9].

The EKF is then applied to estimate the IMU’s pose and

the position of observed landmarks in the coordinates of the

strapdown coordinate system. Additionally, the pose of the

strapdown frame in relation to the navigation frame needs to

be estimated. Thus, the EKF state vector is of the form

st =
[

s′T mT
]T

. (9)

Where s′ comprises the parameters describing the IMU’s

pose and motion. Its specific composition depends on the

chosen pose error parameterization. Therefore, a more detailed

description is deferred until secs. IV-B3 to IV-B5. The Carte-

sian coordinates of all landmarks that are included in the filter’s

state are combined in the map vector m:

m =
[

YT
1 . . . YT

N

]T
(10)

Here, N is the number of landmarks. Subsequently, esti-

mated values are denoted by a hat (̂·) and a tilde (̃·) indicates

the error, i.e., the deviation between a true value (·) and its

estimate: (̃·) = (·)− (̂·).
Because the EKF relies on a truncation of the Taylor series

expansion of both the time update step and the measurement

equation, it can be regarded as an estimator for the state

error, which lies in the tangent plane of the manifold that

contains all possible state values. Therefore, the dimension of

the error state s̃ is not necessarily identical to the dimension

of the state vector s. In particular, any parameterization for

the pose of a rigid body can be chosen, like a homogeneous

matrix (1) or a combination of a quaternion and a position

vector. Independent of this, the error may be represented by a

screw motion or by a rotation vector and a translation vector.

Only the covariance matrix, the Jacobians for the measurement

as well as the prediction step, and the state update equations

after measurements will change depending on the chosen error

model.

B. Prediction step

1) Inertial measurements: During the prediction step, the

IMU’s pose and the associated uncertainty are propagated in

time. The IMU measures its acceleration and angular velocity

relative to an inertial reference frame:

b
ma = ba+ ba + na (11)
b
mωωω = bωωω + bg + ng (12)

Where b
ma and b

mωωω are acceleration and angular rate mea-

surements, respectively. These measurements are disturbed by

additive, white Gaussian noise terms na and ng as well as

additive biases ba and bg . The biases change according to a

random walk process driven by white Gaussian noise terms

nba and nbg .

2) Covariance propagation: The error state is propagated

according to a first order differential equation that depends on

the chosen error model as well as the physical model:

·

s̃′ = F · s̃′ +G · n (13)

Here, vector n summarizes the noise terms. The entries of

the matrices F and G are determined by the coefficients of the

time derivatives given in secs. IV-B3 to IV-B5. With the time

derivatives of the error state, the covariance is propagated as

follows for each inertial measurement:

Φ = exp(F · τ) ≈ I15×15 + F · τ (14)

P ′

t+τ = Φ · Ps̃′,s̃′ · ΦT
t +Φ ·G ·Q ·GT · ΦTτ (15)

Pt+τ =

[

P ′

t+τ Φ · Ps̃′,m̃

Pm̃,s̃′ · ΦT Pm̃,m̃

]

(16)

In the expression above, P and P ′ are the covariance

matrices pertaining to s and s′, respectively. Furthermore, Q
is the power spectral density matrix which characterizes the

noise vector n.

3) Standard error state: In this work, the term standard er-

ror state refers to the following description of the relationship

between the true IMU pose T s
b and its estimate T̂ s

b :

T s
b =

[

C(ΨΨΨs
b) · Ĉs

b
sp̂b +

sp̃b

0 1

]

(17)

Where C(ΨΨΨ) = exp(ΨΨΨ) is the rotation matrix corresponding

to the Rodrigues vector ΨΨΨ ∈ so(3). The definition (17) is

equivalent to the definition given in [8]. In this case, the error

state is given by:

s̃′ =
[

sp̃T
b

sṽT
b b̃T

a ΨΨΨs
b
T
b̃T
g

np̃T
s ΨΨΨn

s
T
]T

(18)
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In order to propagate the estimate of the IMU’s pose in time,

the effect of gravity on the inertial measurements needs to be

compensated. This leads to the following equations to update

the velocity and pose estimates:

sâ=Ĉs
b · (bma− b̂a)+Ĉs

n ·n g (19)

sp̂b,t+τ=
sp̂b+

sv̂b · τ+
1

2
sâ · τ2 (20)

sv̂b,t+τ=
sv̂b+

sâ · τ (21)

Ĉs
b,t+τ=Ĉs

b · C(bω̂ωω · τ) (22)

Where τ is the time interval between consecutive inertial

measurements. Thus, the time derivatives, which are needed

to propagate the covariance according to (13), can now be

stated as:

·
sp̃b=

sṽb (23)
·

sṽb=
⌊

−Ĉs
b · (bmab − b̂a)

⌋

×

·Ψs
b + Ĉs

b · na − ...

Ĉs
b · b̃a + Ĉn

s
T · ⌊ng⌋

×
·Ψn

s (24)
·

b̃a=nba (25)
·

Ψs
b=−Ĉs

b · (b̃g + ng) (26)
·

b̃g=nbg (27)
·

np̃s=03×3 (28)
·

Ψn
s=03×3 (29)

Henceforth, the error model given by (17) is always used

for the transformation between the {s} and {n} frames. Since

it does not change in time, its time derivatives (28) and (29)

vanish and are thus omitted in the ensuing sections. Moreover,

the time derivatives for the bias terms (25) and (27) as well

as the attitude propagation equation (22) will not be restated.

4) Left-invariant error twist: When using a multiplicative

error model based on the twist representation, the corrections

can be applied either by multiplying from the left or from

the right. The latter case is subsequently called left-invariant

error twist, because the error is invariant w.r.t. multiplications

by constant matrices from the left. Consequently, applying the

correcting transformations from the left is henceforth referred

to as right-invariant.

For the left-invariant case the corrections are applied as

follows:

T s
b = T̂ s

b · exp(SΨΨΨ,ξξξ)

=

[

Ĉs
b · C(ΨΨΨ) Ĉs

b · u+ sp̂b

0 1

]

(30)

With C(ΨΨΨ) and u defined by:

exp(SΨΨΨ,ξξξ) =

[

C(ΨΨΨ) u

0 1

]

(31)

Hence, the error model is different from (17). In particular,

the position correction has to be transformed to the reference

system. Note, that the error twist in (30) is similar to a body

velocity as defined in (8). It is assumed that the IMU moves

according to

·

T s
b = T s

b · Sωωω,v. (32)

Where Sωωω,v is the body velocity. The error state vector for

this parameterization is:

s̃′ =
[

ξξξT bṽT b̃T
a ΨΨΨs

b
T
b̃T
g

np̃T
s ΨΨΨn

s
T
]T

(33)

Here, the position error and the translational velocity relative

to the reference frame are replaced by the corresponding

part of the error twist and the body velocity. Subsequently,

the shorthand notation E(ΨΨΨ, ξξξ) = exp(SΨΨΨ,ξξξ) is used for the

multiplicative error. Also, the error twist and the body velocity

twist are written as vectors tǫ and tv , respectively. Solving (30)

for the error and taking the time derivative gives:

·

E (ΨΨΨ, ξξξ)=

·
(

(T̂ s
b )

−1 · T s
b

)

(34)

=−Sω̂ωω,v̂ · (T̂ s
b )

−1 · T s
b + (T̂ s

b )
−1 · T s

b · Sω,vω,vω,v (35)

=−Sω̂ωω,v̂ · E(ΨΨΨ, ξξξ) + E(ΨΨΨ, ξξξ) · Sω,vω,vω,v (36)

In [15], Bullo and Murray derive a version of this differential

equation that only depends on elements in the Lie algebra. If

second order terms, i.e., products of error terms, are neglected,

this can be stated as:

·

tǫ=−adt̂v (tǫ) + tv − t̂v (37)

Or, equivalently:





·

ΨΨΨ
·

ξξξ



=

[

−
⌊

bω̂ωω
⌋

×
0

−
⌊

bv̂
⌋

×
−
⌊

bω̂ωω
⌋

×

]

·
[

ΨΨΨ
ξξξ

]

+

[

bω̃ωω
bṽ

]

(38)

Eq. (38) describes the change of the error state in time

for the twist representation. With this relationship the time

derivatives for the whole error state can be written as follows:

·

ξξξ =−
⌊

bv̂
⌋

×
·ΨΨΨs

b −
⌊

bω̂ωω
⌋

×
· ξξξ + bṽ (39)

·

bṽ=C(−bω̂ωω · τ) ·
(

na − b̃a +
⌊

Ĉs
b
T · Ĉn

s
T · ng

⌋

×

·ΨΨΨs
b + ...

Ĉs
b
T · Ĉn

s
T · ⌊ng⌋

×
·ΨΨΨn

s

)

−
⌊

bω̂ωω
⌋

×

bṽ (40)

·

ΨΨΨs
b=−

⌊

bω̂ωω
⌋

×
·ΨΨΨs

b − b̃g − ng (41)

The corresponding equations to propagate the position and

velocity estimates in time are:
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bâ =b
ma− b̂a+Ĉb

s · Ĉs
n ·n g (42)

sp̂b,t+τ=
sp̂b+Ĉs

b

(

bv̂b · τ+
1

2
bâ · τ2

)

(43)

bv̂t+τ =C(−bω̂ωω · τ) · (bv̂+bâ · τ) (44)

5) Right-invariant error twist: Applying the corrections to

the estimated pose by left multiplication leads to the following

update rule:

T s
b = exp(SΨΨΨ,ξξξ) · T̂ s

b

=

[

C(ΨΨΨ) · Ĉs
b u+ C(ΨΨΨ) · sp̂b

0 1

]

(45)

In this case, attitude corrections also affect the position

estimate. In conjunction with this error model the subsequent

error state vector is used:

s̃′ =
[

ξξξT sṽT
b b̃T

a ΨΨΨs
b
T
b̃T
g

np̃T
s ΨΨΨn

s
T
]T

(46)

The parameters ΨΨΨs
b and ξξξ now belong to the spatial error

twist (45). A derivation as described in the previous section

yields the time derivative of the error state if a spatial velocity

twist is used in conjunction with the spatial error twist. How-

ever, the calculations are more involved and a larger number

of second order terms were omitted during the calculations.

Finally, the time derivatives can be stated:

·

ξξξ =⌊svb⌋× ·ΨΨΨs
b − ⌊sp̂b⌋× · Ĉs

b · (bg + nr) +
sṽb (47)

·
sṽb=

⌊

−Ĉs
b · (bmab − b̂a)

⌋

×

·Ψs
b + Ĉs

b · na − ...

Ĉs
b · b̃a + Ĉn

s
T · ⌊ng⌋

×
·Ψn

s (48)
·

ΨΨΨs
b =−Ĉs

b · (b̃g + ng) (49)

Eqs. (19)-(22) are used to propagate the estimated pose in

time.

C. Measurement update

Characteristically textured surface elements serve as land-

marks whose projections onto the image plane are continuously

tracked in the video stream. The image coordinates of these

projections are are stacked to a single measurement vector z

that is used to update the filter state by performing an EKF

update step to obtain an estimate of the error state s̃, c.f. [16]:

K=HT · P · (H · P ·HT +R)−1 (50)

ˆ̃s =K · (z− h(s)) (51)

Here, R is the covariance matrix of the stacked measurement

vector and H is the Jacobian of the measurement equation,

which consists of a coordinate transformation followed by a

central projection. The linearized measurement equation for a

landmark Yi can be stated as

zi=h(ŝ′, Ŷi) +Hs′ · s̃′ +Hy · ỹy + v , (52)

thereby making its dependence on the error state explicit. In

(52) v is the zero mean measurement noise. The Jacobians Hs′

and Hy depend on the chosen error model. They are calculated

numerically by applying small perturbations to the estimated

states according to the multiplicative error models described

in sec. IV-B3 to IV-B5. Finally, the estimated error state is

employed to update the state variables, again by applying the

appropriate update rule for the pose estimates. In addition, the

covariance matrix is updated according to:

P+=P− −K · (H · P− ·HT +R)−1 ·KT (53)

These measurement update equations in connection with the

equations for the time update given in the previous section

define the EKF-SLAM estimator for different pose parameter-

izations.

When new landmarks are introduced in the filter’s state,

an inverse form of the measurement model is employed in

order to obtain an initial estimate of their position and the

cross covariance terms. New landmarks are initialized with a

fix depth of eight meters and a large uncertainty in the direction

of the projection ray.

Both the position vector and the yaw angle pertaining to

the transformation Tn
s are not observable, c.f. [9]. For the

simulation experiments the corresponding entries in the state

vector were therefore fixed by setting the respective entries in

the covariance matrix and calculated Jacobians to zero.

On the contrary, when processing real data sequences, we

make use of the composition step to reduce the effects of

linearization related errors as originally proposed in [17]. The

composition step is essentially a coordinate transformation that

is applied to reset the reference frame. In this case the complete

transformation Tn
s is needed to perform the composition step.

V. EXPERIMENTAL RESULTS

A. Simulation runs

A number of simulation runs were conducted in order

to compare the different approaches to pose error parame-

terization. For this purpose, acceleration measurements were

generated by sampling the second derivative of a C2-spline

that is used to specify the trajectory of the sensor system.

Similarly, angular rate measurements were obtained from the

incremental rotations between successive reference frames.

White, Gaussian noise with zero mean and additive biases

were added to the generated inertial measurements. The pa-

rameters of the artificial noise were chosen to imitate the

noise characteristics measured by the sensor system used

for the experiments described in V-B. Moreover, landmark

observations were simulated by projecting known reference

points onto the image plane and adding Gaussian noise with

zero mean and a standard deviation of one pixel.
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The simulations provide accurate ground truth which allows

to assess the consistency of the employed filtering technique by

computing the NEES measure [18]. For a consistent estimator,

the NEES should be roughly below a threshold of 14 most of

the time.

Fig. 2 presents the results for a simulated walk through a

long rectangular-shaped hallway with sharp right turns at the

end of each section. In this scene, landmarks go out of view

while new landmarks have to be added to the filter’s state

regularly.

According to the plots for pose error and NEES in Fig. 2b

and 2c, the right invariant error parameterization performs very

similar to the standard error parameterization concerning atti-

tude error as well as attitude NEES while the plots for the left-

invariant error deviate from this pattern. However, the situation

changes for the position estimates. Here, the left-invariant and

the standard error parameterization are almost indistinguish-

able while the plots for the right-invariant parameterization

are slightly different. At the end of the hallway trajectory, the

standard error parameterization slightly outperforms the two

alternative approaches.

This behavior may be explained by the structure of the

update equations (17), (30), and (45): The attitude correction

equations are identical for the right-invariant and the standard

parameterization, but the position update for the right-invariant

parameterization also depends on the estimated attitude error.

Because the plots are partly indistinguishable, tables I and

II additionally summarize the simulation results in terms of

average pose error and average NEES.

Overall, the results for the simulated turntable sequence

shown in Fig. 3 confirm these findings. Yet, the standard

error state and the left-invariant error parameterization are even

closer regarding position error and position consistency. This

indicates, that the slight difference between them observed at

the end of the hallway sequence is probably mainly due to

linearization errors which are introduced when new landmarks

are included. These play a less important role in the turntable

sequence, because new landmarks are only inserted once in

the beginning.

The NEES plots show that the filter is inconsistent for

all parameterizations under investigation. The inconsistency

mainly stems from the fact that landmarks are initialized with

a fix depth and a large uncertainty because the Gaussian

distribution assumption is severely violated thereby.

B. Indoor experiment

The EKF-SLAM approach was also applied to an indoor

dataset that was recorded in an office building using a sensor

system fixed to the torso of a pedestrian. The employed sensor

system is composed of MEMS accelerometers with 5-10 mg

RMS noise characteristics and gyroscopes that are subject

to a 0.0056 ◦ / (sec ·√sec) angular velocity random walk

according to the manufacturers. In addition, a camera records

video images with a resolution of 1398x1080 pixels at 28 Hz.

These images are scaled down to half size and the Harris corner

detector with subsequent subpixel estimation is employed to
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Fig. 2. Simulation results for hallway sequence. (a) Top view of a simulation
run with the standard error state parameterization. Green: Estimated trajectory
Light blue: Estimated landmark positions Red: Reference trajectory Orange:
Reference landmark positions. (b) Attitude (top) and position (bottom) error.
(c) Attitude (top) and position (bottom) NEES. Color codings for (b) and (c):
Green: Right-invariant error Red: Left-invariant error Blue: Standard error
state.
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Left-invariant 45.5793 24.2785 0.1895 0.1015

Right-invariant 42.644443 29.209042 0.2192 0.1081

Standard Error-state 46.7471 28.9725 0.1876 0.1077

detect salient image points which are tracked with a pyramidal

implementation of the Lucas-Kanade algorithm [19], [20].

The algorithm was run on this indoor dataset once for each

of the three presented error parameterizations performing a

composition step regularly as described in sec. IV-C. The

calculated trajectories are shown in Fig. 4 printed on top of

the building’s floor plan. Since accurate ground truth is not

available for this dataset, a comparison can only be made by
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Fig. 3. Simulation results for cube sequence. (a) Slanted view of a simulation
run with the standard error state parameterization. (b) Attitude (top) and
position error (bottom). (c) Attitude (top) and position (bottom) NEES. See
Fig. 2 for details.

TABLE II
SIMULATION RESULTS: CUBE SEQUENCE
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Left-invariant 4.0015 5.5863 0.0070 0.0881

Right-invariant 6.6691 5.3010 0.0071 0.0896

Standard Error-state 4.0421 5.3024 0.0070 0.0896

comparing the estimated trajectories with the floor plan. An

integrated compass was used to determine the initial attitude

of the sensor system w.r.t. the map and the starting position

was chosen such that the remaining trajectory fits best to the

floor plan.

It can be observed that the trajectories estimated with the

different error parameterizations increasingly differ from each

other the farther the system gets from the starting point.

However, the results obtained with all parameterizations are

(a)

(b)

(c)

Fig. 4. Results on indoor dataset. Top: Left-invariant error twist, Center:
Right-invariant error twist, Bottom: Standard error state. A blue cross marks
the starting position. A blue diamond marks the trajectory’s end.

very similar in quality. In addition, it is not clear whether the

observed differences primarily stem from the chosen pose error

model or from linearization related inaccuracies pertaining to

the initialization process for new landmarks, which is also

different for each error model. Thus, it is not possible to

determine which of the compared parameterizations is best

based on this experiment.

VI. CONCLUSION

This work compares different pose error parameterizations

for inertial aided visual SLAM. It is noted, that the widespread

error state formulation reflects the structure of the double-
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geodesics on the cross-product space SO(3) × R
3 while the

twist representation more closely resembles the mathematical

structure of the associated group SE(3). The error state pa-

rameterizations and the corresponding time and measurement

update equations for the applied EKF are described.
A comparison of the different parameterizations is presented

based on simulated trajectories and a real indoor dataset.

For the simulated trajectories, the differences between the

approaches regarding pose error and consistency are marginal.

However, the standard error state approach seems to be slightly

beneficial. Similarly, the results on the real indoor dataset do

not clearly favor one parameterization.
Its incapability to relinearize about past states is a well

known disadvantage of the EKF employed for state estimation

in this work. It would therefore be of interest to compare the

presented motion and measurement models in a batch estima-

tion framework with relinearization in future work in order to

investigate to what extend the different parameterizations can

take advantage of relinearization.
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