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Abstract—The paper deals with the design, calibration and
experimental validation of a novel infrastructure-less solution
dedicated to indoor pedestrian localisation issues. The approach
involves aerodynamic fluid computation for instantaneous speed
estimation of a pedestrian handling a smartphone. For this
purpose, a differential pressure-based MEMS anemometer is
integrated to an Android smartphone by means of a dedicated
PIC 32 bits microcontroller. Measurements of the pedestrian
orientation are ensured by a gyroscope sensor coupled with the
smartphone. Consequently, both instantaneous speed and heading
measurements are combined to the dead reckoning technique
for estimating the 2D relative position of the user. Theoretical
modeling is conducted in order to calibrate and quantify the
accuracy of the sensor. In situ experiments along straight paths
demonstrate that the sensors coupled with a smartphone achieve
pedestrian localisation with average accuracy of less than 6 %
of the total travelled distance.

Index Terms—Indoor pedestrian localisation, infrastructure-
less solution, sensor augmented smartphone, localisation based
service, smart sensors.

I. INTRODUCTION

During the last decade, we are experiencing an increasing
interest for indoor pedestrian localisation services. In fact,
the rapid growth of Localisation Based Services (LBS)
is motivated on the one hand by the recent technological
progress involved in smartphones design and on the other
hand by the added value provided by LBS for urban mobility.
The LBS use commonly the location of nomadic devices to
deliver appropriate services to the user. Thus, the accurate
determination of the user localisation is the key features
of an efficient technological solution. Ultimately, indoor
localisation-based technologies have to be ubiquitous, fading
into the background, cost effective and naturally supported
by all nomadic devices.

According to literature, the indoor pedestrian localisation
has been initially addressed by pre-installed infrastructure
solutions (GNSS, UWB, WIFI, Cell Id, RFID,...) [1] [2]
[3] [4] [5]. Even if these solutions are smartphone oriented
with sub-meter accuracies, they require large amounts of
infrastructure to be installed into the environment or an
extended and reliable calibration process to ensure accurate
location determination. The cost and constraints introduced
by those approaches may limit the frame of usability to
specific applications.

In the light of those observations, recent research efforts
have been put in the development of infrastructure-less
solutions based on range of technological solutions including
inertial, camera and magnetometry techniques. From first
results stressed by the literature [6] [7], infrastructure-less
solutions can achieve indoor localisation with a meter
accuracy. A common solution consists in equipping the user
or the smartphone with additional sensors in conjunction
to dedicated computation resources in order to catch the
dynamics of walking experienced by the pedestrian. Even
if encouraging results are presented, developed solutions
remain computationally expensive and suffer from the lack
of scalability limiting the scope for applications involving
mobility.

In fact, vision-based solutions achieve localisation with a
standard deviation of about ± 1 to 2 m but require real-time
computing resources for constant performances. Li et al.
[8], introduced recently an original vision-based positioning
method with the use of single camera and newly defined
3D map for indoor localisation and navigation issues. The
positioning procedure is performed in two phases: image
processing and pose estimation. In the image processing
phase, images grabbed in real time are matched with the 3D
map (collection of geo-referenced images) to recognize and
identify feature points in the environment using a dedicated
algorithm.

Magnetic based-approach offers the opportunity to achieve
a smart integration with the smartphone [9] due to the compact
size of available sensors nowadays. However, the accuracy
of localisation is sensitive to the magnetic response of the
environment in the vicinity of the user. Consequently, large
magnetic deviations can be observed leading to an unprecise
localisation. The first system based on the above solution
can be attributed to Foxlin [10]. Foxlin’s system uses a
tri-axial magnetometer sensor to compute a yaw measurement
that is used as an input measurement to feed an Indirect
Kalman Filter (IKF). Experimental results showed a good
performance in a wood-frame house. However, a limitation is
that magnetometers are unusable in steel structure and many
other indoor environments [11]. Moreover, this technique is
commonly related to a fingerprinting-based approach and
requires to perform the magnetic mapping of the environment.
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Comparing to existing infrastructure-less techniques,
the Inertial Navigation System (INS) approach has been
extensively studied the last years due to the outstanding
localisation accuracy which could be achieved [9] [12]
[13]. In its most common implementation, the state-of-
the-art solution consists of a small 6-DOF MEMS Inertial
Measurement Unit (IMU) providing rate-of-rotation and
acceleration measurements. These measurements are used in
a strapdown inertial computer to estimate the pedestrian’s
location according to a known starting position. Nevertheless,
IMU suffers usually from important drift errors and requires
expensive computational resources for real-time error
compensation (Kalman filtering, Bayesian approach ...). [14]
[15] [16].

We propose to address, in this paper, the issue of indoor
pedestrian localisation based on a infrastructure-less solution
by a novel technological approach aiming to bring new
solutions to this field. It consists of a smartphone augmented
sensors with hybridization approach involving anemometer
and gyroscopic sensors. In fact, a differential pressure-
based MEMS anemometer is integrated to an Android
smartphone by means of a dedicated Microchip PIC 32 bits
microcontroller. Hence, the instantaneous pedestrian velocity
along the walking direction is measured according to air flow
dynamics experienced by the anemometer. Since drift errors
are reduced with the MEMS anemometer, speed signals
could be easily computationally manipulated for estimating
the walking distance, without the need of the step length as
required in podometry techniques.
As a matter of fact the anemometer delivers measurements
along the walking heading, achieving 2D pedestrian
localisation requires orientation measurements. Consequently,
sensor fusion technique is implemented between the
anemometer and the gyroscope (IDG300 dual-axis from
InvenSens). Dedicated computational algorithm has been
developed in the PIC 32 platform in order to ensure signal
processing, sensor fusion and position estimation. Extensive
indoor experiments have been conducted in order to validate
the efficiency and the robustness of the adopted approach.

The paper is organized as follows. The foundations of
the anemometry approach are given in section II. In the
section III, details on the sensor calibration and the accuracy
determination are provided for both static and dynamic cases.
Section IV presents the designed prototype and experimental
results issued from trials. Finally, section V concludes the
paper and introduces future works under development.

II. ANEMOMETRY APPROACH

The aim of the designed system is to perform indoor
pedestrian localisation based on measuring the user
(pedestrian) velocity. This latter can be addressed by
determining the air flow velocity produced by the user
in the environment. This technique is well adapted to

indoor configurations where draught is commonly limited or
controlled (buildings, museum ...).

According to the literature, the air flow velocity can be mea-
sured by various methods, commonly referring to anemometry,
using a broad physical principles. Among different existing
techniques, only few anemometers fit requirements of the
pedestrian dynamics (eg. sensitivity, accuracy). Three main
approaches appeared relevant to case study involved in the pa-
per: ultrasound anemometer, hot-wire anemometer or pressure-
based anemometer. After a benchmark of selected solutions
based on criteria such as the sensitivity, the robustness and
the cost, we focused on the third technique and especially on
the Pitot tube theory. This approach is indeed widely used and
could be adapted to the case of study.

A. Pitot tube theory

The Pitot tube theory is an application of Bernoulli’s equa-
tion for measuring the velocity of a fluid in the flow direction.
Assuming that the altitude is constant and considering only
positive speeds in the flow direction, a Pitot tube sensor would
be ruled by equation (1).

Vfluid =

√
2× pt − ps

ρ
(1)

where Vfluid is the fluid velocity, pt the total pressure, ps the
static pressure and ρ the fluid density (which is, in our case,
the air density).

If the measurement ∆p = pt − ps is known, and assuming
that the pedestrian walking velocity is smaller than air density
variations, equation (1) can be simplified to:

Vfluid = Constant×
√

∆p (2)

where the constant may be determined according to an exper-
imental calibration procedure.

B. Sensor specifications according to air flow dynamics

The main assumption presented is that draught is commonly
limited or controlled in our case application. The assumption
is obviously arguable and could restrict the field of application.
However, it appears that this hypothesis is mostly acceptable
in the pedestrian indoor localisation context. Therefore, we can
consider that Vfluid = V where V is the pedestrian velocity.
It is worth noting that air stream effects are minor except for
important air flow variation. This issue will be discussed in
section IV-D.
The range and the resolution required for a Pitot tube with
a differential pressure sensor need to be specified. Using the
same hypothesis than in II-A, the Bernoulli’s equation (1) can
also be written:

∆p =
1

2
ρV ² (3)
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Robin et al. have developed a discrete modeling of human
walking behavior [17] in which they measured and classified
several pedestrian walks. The paper underlines that velocity
range for pedestrian is comprised between 0.5 m/s and 2.5
m/s, with an average around 1.3 m/s. Taking into consideration
those averaged speeds and adding margins, we assume that
the pedestrian walk is comprised between 0 m/s and 5 m/s.
Additionally, the air density is approximated to 1.2 kg/m3

(value at sea level and 20°C). Those assumptions and equation
(3) consequently lead to write:

0Pa ≤ ∆p ≤ 15Pa

Moreover, in order to achieve the best resolution on this range,
we define an acceptable resolution of the system as 0.1 Pa.

C. Sensor selection

A solution of interest fitting the previous requirements (see
II-B) is based on thermal micro-flow measurement. For this
purpose, a commercial thermal micro-flow MEMS is adopted.
In this solution, a constrained air flow is heated and two
thermal resistors measure the air flow temperature variation
(see figure 1). The temperature gradient is linked to the
velocity of the flow.

Air Flow

Temperature 
sensitive resistors

Heating element

Fig. 1. Principle of the thermal micro-flow measurement

Among available commercial sensors, we selected the LBA
series sensor (figure 2) from SensorTechnics GmbH company
in view of the outstanding features achieved by the sensor
(sensitivity, temperature compensated, cost-effective).

Fig. 2. MEMS thermal micro-flow LBA series sensor from SensorTechnics
GmbH

III. SENSOR CALIBRATION AND ACCURACY
DETERMINATION

Since the LBA sensor is based on a linear differential
pressure principle whereas we aim to measure the air flow
velocity, it is crucial to perform both sensor calibration and
characterization in order to validate the compatibility of such
sensor with the air flow velocity measurement.

A. Sensor calibration

As stated before, the LBA sensor is calibrated to deliver a
linear voltage output according to a differential pressure input.
If Us is the sensor output and α, β are constants, the output
can be expressed as:

Us = α.∆p+ β (4)

Combining this equation with the Pitot tube theory (eq. 2), the
velocity of the air flow V can be written:

V = sign
√
aUs + b (5)

where a and b are constants determined by calibration. In
our configuration, we have limited measurements to positive
speeds, thus sign = 1. In order to perform the sensor cali-
bration, the LBA sensor was introduced in a wind tunnel and
the output voltage Us was measured according to incremental
air flow velocities (from 0.25 m/s to 2.7 m/s). The sensor
output characteristic according to the air speed is depicted
in figure 3 showing obviously the square root shape. From
the experimental measurements, a linear regression allows the
determination of constants a and b.

Fig. 3. Measured output characteristic of the LBA sensor

B. Transient response of the sensor

During a walking process at a constant average speed,
the pedestrian’s velocity signal shape is commonly periodic.
Indeed, each period relies to the foot step phase. As mentioned
in I, the pedestrian velocity will be numerically integrated
to calculate the travelled distance. Therefore, studying the
transient response of LBA sensor is required to avoid unprecise
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data analysis. This study is achieved by measuring the step
response of the sensor to five input magnitudes. Experiments
have been conducted in controlled environment (wind tunnel).
Figure 4 shows the sensor output signal and table I the time
constant for each experimentation.

Fig. 4. Transient responses of LBA sensor to step inputs

∆V (m/s) 2.5 2.0 1.5 1.0 0.5
τ (ms) 1.7 4.2 4.7 5.6 5.6

TABLE I
RESPONSE TIME OF THE LBA SENSOR

As we suspected (eq. 5), the sensor output is not linear.
However, the plots can be modeled as a first order system
response. Thus, we consider the time constant to be the
abscissa of the intersection between the tangent to the origin
and the established value of the transient response. These
results suggest that the time constant τ of the sensor is less
than 10 ms whatever the amplitude of the input signal is.
Therefore, we can consider that the sensor is convenient for
walks up to 100 Hz frequency which referring to a hundred
steps per seconds.

C. Sensor accuracy

Another issue to consider is the accuracy of the sensor for
air flow velocity measurements. In fact, at a very low speed
(less than 1 m/s), the output voltage Us from the LBA is
around the millivolts and due to the square root shape of the
characteristic, the voltage measurement can be complex.
Considering the data sheet of the sensor, the table II gives the
total accuracy referring to the combined error due to linearity,
pressure hysteresis, offset, span calibration and temperature
effects.

Characteristics Min. Typ. Max. Unit

Non-linearity ±(1.8 % of
reading +

0.2 %FSS)

±(2.4 % of
reading +

0.3 %FSS)
Zero pressure offset 2.47 2.50 2.53 V
Full scale span 3.92 4.00 4.02
Thermal
effects

Offset
5...55 °C

±25 mV

Span
5...55 °C

±2 %FSS

Total
accuracy

5...55 °C ±(2.25 % of
reading +

2.25 %FSS)

TABLE II
PART OF THE DATA SHEET OF THE LBA SENSOR

Figure 5 illustrates the maximum effect of the total accuracy
on the measured air velocity. In the range between 0.5 m/s
and 1.5 m/s, the inaccuracy is important partly due to the
square root characteristic of the sensor. As an illustration of
this effect, if the pedestrian remains in static configuration (not
moving), the measured velocity can be up to 1 m/s mainly
due to the total inaccuracy. If the pedestrian is walking at an
average speed of 1 m/s, errors could lead the sensor to measure
from 0 m/s up to 1.4 m/s with a consequence as inaccuracy
in the user position estimation.

LBA characteristic Total accuracy

Achieved accuracy with initialization process
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Fig. 5. Inaccuracy effect on the LBA characteristic

It is worth noting that most of the total inaccuracy is
due to offsets. Indeed calibration, zero pressure value and
temperature affect the sensor output with offsets. For the
duration of the experiment, those parameters are assumed
to be constant. In fact, from experiments we conducted, we
have noticed that the zero pressure offset can be different
at each new trial but remains the same during the whole
walk. The temperature is assumed to be constant in the
indoor configuration (or without important variation). Finally,
the sensor characterization performed during the calibration
process and ruled by equation 5 exhibits small drifts and
remains nearly the same from experiment to experiment
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(constants a and b are unchanged).

The overall inaccuracy will be approximated by an offset U0

which is not varying during the pedestrian walk. This offset
can be estimated by a short initialization process before the
departure. Therefore, the sensor characteristic (eq. 5) will be
adapted to compensate the offset effect and can be written as:

V =
√
aUc + b (6)

Uc is the compensated output of the sensor with:

Uc = Us − U0 +
−b
a

(7)

U0 is the offset measured during the initialization process
before the departure.

Based on this approach, the remaining error would be
limited to the non-linearity effect. Illustration of improvements
introduced by equation 7 is depicted in figure 5 (’Achieved
accuracy with initialization process’).

Nonetheless, due to the square root shape of the sensor
characteristic, and in spite of improvements achieved with the
offset compensation method, the air velocity measurement will
remain inaccurate around zero. As shown in figure 5, a few
millivolts on sensor output can lead to an error of 0.5 m/s
and consequently to an inaccuracy position estimation. In
addition, we can also notice that for air velocities higher than
0.6 m/s, the non-linearity effect decreases. Consequently, the
sensor becomes less sensitive to the square root for established
pedestrian velocities.

D. Offset initialization

As stated before, the accuracy of the anemometer can be
improved by the introduction of an offset U0 to the LBA output
voltage Us. This offset is evaluated by averaging the output
during 10 seconds while keeping the velocity equal to zero.
From equation (6), U0 is bounded in order to satisfy that:

aUc + b > 0 (8)

According to the shape of the output characteristic (see fig.
3, a is positive. Combining with equation 7, the condition (8)
leads to write:

Us > U0 (9)

We have conducted more than 30 trials with measuring the
magnitude of Us − U0 during 10 seconds (with a sampling
frequency of 1 kHz) in a static position and formed then the
distribution of Us−U0 (depicted in figure 6). The distribution
highlights that for a very low speed, condition ruled by
equation (8) is not always observed.

In order to overcome the bias influence, a threshold k is
introduced from equation 6 as:
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Fig. 6. Us − U0 distribution of the sensor at zero velocity condition

{
V =

√
aUc + b

V = 0

Us > U0 + k

otherwise
(10)

The threshold k has to be carefully determined in order
to keep the sensor sensitive around 0 m/s and to satisfy the
condition issued from equation (8). From observations we
made from experiments and trials, the threshold k can be
determined experimentally. We observed that the distribution
Us − U0 for the zero velocity case and during the walking
phase are significantly different. In fact, figure 7 depicts the
distribution for the zero velocity case and for large amount
of trajectories (7 m, 14 m, 21 m, 28 m, 35 m, 42 m and
49 m). The difference on the shape distribution suggests that
the threshold k can be tuned manually with respect to the
condition issued from equation (8) and the sensor sensitivity.

Fig. 7. Us −U0 distribution for the zero velocity case and for large amount
of trajectories

E. Sensor calibration correction for the walking phase

The calibration process involved in III-A has been per-
formed in a wind tunnel with controlled environment con-
ditions. If we achieve the conversion from output voltage to
speed rigorously following the calibration process, it appears
that an important bias is produced during the walking phase.
The bias origin may be explained by the fact that air flow

5



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

measurements in a wind tunnel is achieved with constrained
flow conditions whereas indoor measurements involve an open
atmosphere.
In order to quantify the bias contribution, we have numerically
computed an average speed (V̄ ) along different straight paths
(7 m, 14 m, 21 m, 28 m, 35 m, 42 m and 49 m). For each
path, we repeated the experiment 30 times. Knowing the total
elapsed time during the travelled path and the distance, we
computed the ”true” average speed for each path (V̄true).
Finally, we formed the error on speed Verror for each path
and trials as:

Verror = V̄ − V̄true (11)

Figure 8 presents the distribution of Verror without any
correction. It is worth of noting that the average error is around
−1m/s.

Fig. 8. Verror distribution on averaged velocities

Considering the Gaussian shape of the distribution depicted
in figure 8, we could assume that Verror is following a normal
law. Consequently, we can consider Verror as the sum of a
constant bias bv and a noise nv following a normal law as
following:

Verror = bv + nv nv ∼ N(0, σv) (12)

Substituting equation (12) into equation 11 leads to write:

V̄true = V̄ − (bv + nv) (13)

We aim to correct the characteristic equation 10 which rules
the behavior of the sensor in order to bring bv to 0 and
reducing σv to minimum. Therefore, we propose to upgrade
this equation by adding two correction parameters c1 and c2 in
order to shift the mean Verror distribution from -1 m/s to 0 m/s.
Of course, different techniques can be envisaged in order to
balance the bias contribution (numerical techniques, recursive
approach, sensitivity functions ...). The correction approach
we adopted is motivated by its inexpensive computationally
feature allowing parameters to be tuned in a on-line way.
Therefore, equation 10 is adjusted as following:

{
V = c1

√
aUc + b+ c2

V = 0

Us > c1(U0 + k) + c2

otherwise
(14)

We have investigated experimentally the influence of the
parameters c1 and c2 on the Verror distribution shifting.
Optimal values of c1 and c2 bringing Verror distribution from
-1 m/s to 0 m/s are respectively 1.4 and 0.75. Figure 9
shows the efficiency of the correction performed on the Verror
distribution for different straight paths (from 7 m to 49 m).

Fig. 9. Shifting of the mean Verror distribution from -1 m/s to 0 m/s

IV. PROTOTYPE DESIGN AND EXPERIMENTS

A. Prototype design

Based on previous considerations (see III), first experiments
of such sensor revealed the quality of the LBA output signal
in terms of reduced noise, fast dynamic response, and
appropriate accuracy for the pedestrian context. As mentioned
in I, we aim to develop a nomadic compact solution
(smartphone oriented solution) based on anemometry sensor
integration with the smartphone. Since it is assumed that
the sensor will always be oriented in the moving direction
(Figure 10), the dynamic pressure is measured in the air
flow direction. The static pressure is approximated to the
pressure inside the prototype. The display unit of the
prototype is provided by the Android device. Sensor data
acquisition is performed thanks to a dedicated Microchip
PIC 32 bits microcontroller connected to the smartphone via
the USB. In addition, numerical computation for position
estimation is achieved by the 32 Bits microcontroller (figure
11) in order to avoid risk of interruption due to Android tasks.
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Air Flow

Fig. 10. An overview of the device orientation according to the measurement
direction

Android 
Smartphone

LBA Sensor

Acquisition 
card

Battery pack

Fig. 11. Detailed view of the main parts of our prototype

B. Experimental protocol

The proposed prototype was tested in a straight corridor
for different distance paths of 7 m, 14 m, 21 m, 28 m, 35 m,
42 m and 49 m. For each test, the pedestrian waited 10 seconds
before departure to perform the initialization step described in
III-C and then start walking along the path with a random
speed. This experiment has been done at different hours
of the day, first keeping windows closed, without crossing
or following people along the path and then without any
precautions to study the effect of the draught.

C. Preliminary results and repeatability

The following results are based on 210 measurements
recorded at different velocities with the same user and without
draught. Figure 12 shows an example of measurements done
for a 49 m path. Figure 12(a) illustrates the sensor output Us,
figure 12(b) shows the velocity estimation from equation 14
and figure 12(c) presents the walked distance issued from the
numerical integration. It appears that a reduced signal-to-noise
ratio is delivered by the sensor and the position according to
time is relatively linear (no disturbances affected the velocity
measurements).
For the repeatability study, we consider the final pedestrian
position during the experiments. Figure 13 shows the obtained
position for each length of paths and for the 30 trials for
each path. One can note that even if the standard deviation

on the speed error is small, its effect on the computed
position is growing rapidly. The dispersion of the measured
position is indeed of 3 m for a 49 m path. We have noticed
that the ratio between the distribution and travelled distance
remains bounded to 6 %. The origin of the growing error
as the travelled distance increases can be attributed to the
constrained correction method (c1 and c2 parameters) adopted
which could suffer from lack of a robustness to a changing
environment. Even if it could appear not accurate, those results
are still encouraging for an infrastructure-less indoor local-
isation approach based on augmented smartphone solution.
Improvements are introduced in the conclusion section in order
to reduce and limit the effect of the drift.
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Fig. 12. Example of a 49 m distance path. (a) Anemometer sensor output,
(b) velocity estimation and (c) user position from numerical integration.

Fig. 13. Repeatability study for different distance paths

D. Draught and air turbulence effects

As the anemometer sensor is based on a linear differential
pressure principle, air turbulence may reduce the position
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Fig. 14. Influence of turbulence on the position accuracy

accuracy. In our case, air turbulence origin can be classified
mainly into two category of air streams; turbulence due to
passing close to another pedestrian, to an opening door... and
established air streams, as draught and building ventilation. In
order to quantify the air stream effects on the sensor accuracy,
we have conducted experiments involving a pedestrian walking
along the 42 m long path at a constant speed and crossed
by another pedestrian at a specific location position. This
experiment was repeated four times with different crossing
speed (from 0.5 m/s to a natural human run). The key issue in
the air stream turbulence is the time of exposure of the sensor
to the stream. In fact, during the crossing phase, even if it’s
close, the time of crossing will be short. Therefore, the velocity
measurement will be biased for a short time. Numerical
integration is involved in the position estimation process. Since
the integral calculus has an averaging effect, the impact on
the accuracy is minimized. Figure 14 shows different results
of crossing phase. We can note that final position error stay
in the same range as the previous experiments (see in IV-C).

In case of a constant draught, a constant bias is added to
the velocity measurement. Since the bias has not been taken
into account in the sensor characteristic, the final position is
affected. In order to quantify the magnitude of this effect, we
repeated the experiment of the 35 m trajectory following a
pedestrian. Different tests, more or less close to the pedestrian
(from 50 cm to 2 m), were conducted. Figure 15 shows that a
short distance (50 cm) between pedestrians leads to a strong
inaccuracy.

E. Android display

In order to offer a complete localisation solution, we have
developed an user interface with Android features. The po-
sition of the user is displayed during the navigation in the
environment (see figure 16).
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Fig. 15. Influence of a constant air flow on the position estimation

Fig. 16. Overview of the Android display

As stated previously, the anemometer achieves velocity
measurements along the walking direction. Moreover, valida-
tion experiments have been conducted according to straight
paths. To enhance the system’s capabilities to planar local-
isation, a dual-axis gyroscope (IDG300 from InvenSens) is
interfaced with the PIC 32 microcontroller for measuring the
pedestrian orientation (heading). The position of the user is
then calculated according to both sensors signals. Furthermore,
the dead reckoning algorithm is update with regards to the
gyroscopic measurements. Figure 17 presents an overview of
the developed system.

Fig. 17. Overview of the sensor augmented smartphone
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V. CONCLUSION
We report in this paper the design of a new sensor coupled

with a smartphone dedicated to the indoor localisation issues.
The key feature of the system is to achieve the localisation
by the combination of compact and low cost sensors
(anemometer and gyroscope). Another potential advantage
offered by this combination is to achieve indoor pedestrian
localisation without the need of deployed infrastructure in the
environment. Finally, the device design is oriented towards
mobility application by the integration of both localisation
and navigation features in the smartphone. Calibration and
characterization experiments have been conducted in order to
evaluate the added value of the pressure-based anemometer
technique. From the first results, the anemometry technique
is adapted for performing the pedestrian localisation based on
the velocity measurement with regards to some precautions.
Therefore, localisation can be achieved with a standard
deviation with average accuracy of less than 6 % of the
total travelled distance in optimal conditions. However,
since the velocity measurement technique relies to the air
flow measurement, the sensor is sensitive to environment
turbulences. In particular, experiments conducted show the
important sensor inaccuracies that can be reached leading
to an underestimation of the pedestrian localisation. Even
if the performed calibration and biases correction improved
significantly the overall accuracy of the sensor, environment
changes (temperature, draught ...) induce variabilities in the
sensor accuracy. More specifically, the correction method
adopted (c1 and c2 parameters) has shown a lack in robustness
to a changing environment.

Although performances of the device are encouraging, chal-
lenges still need to be addressed in the near future. In particu-
lar, it remains difficult to obtain repeatable results mainly due
to air turbulences. Significant efforts will be put on the air
turbulence characterization in order to overcome inaccuracies
produced by this technique. Likewise, improvements on the
position calculation method is envisaged in order to take into
account the encountered situation and tuning the parameters
(eg. a, b, c1, c2 and k) involved in the position estimation with
real-time capabilities. In fact, future works will have to focus
on possible improvements with modern filtering solutions. The
sensor accuracy should also be improved by the introduction of
a map-matching technique allowing the adjustment of the user
position according to map excluding unrealistic positions and
paths (eg. walking through a wall). Furthermore, a focus will
be put on the accuracy determination during the pedestrian
navigation. This parameter can be delivered to the user in

order to evaluate the confidence ratio to give to the position
estimation. Finally, improvements in the user interface will be
addressed including features as path planning, point of interest
finding and LBS services.
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