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Abstract—Laser trackers are widely used to measure kinematic
tasks such as tracking robot movements.

Common methods to evaluate the uncertainty in the kinematic
measurement include approximations specified by the manufac-
turers, various analytical adjustment methods and the Kalman
filter. In this paper a new, real-time technique is proposed, which
estimates the 4D-path (3D-position + time) uncertainty of an
arbitrary path in space. Here a hybrid system estimator in
conjunction with kinematic measurement model is applied. This
method can be applied to processes, which include various types
of kinematic behaviour, constant velocity, variable acceleration
or variable turn rates.

The new approach is compared with the Kalman filter and a
manufacturer’s approximations. The comparison was made using
data obtained by tracking an industrial robot’s tool centre point
(TCP) with a Leica laser tracker AT901. It shows that the new
approach is more appropriate to analysing kinematic processes
than the Kalman filter, as it reduces overshoots and decreases
the estimated variance. In comparison with the manufacturer’s
approximations, the new approach takes account of kinematic
behaviour, with an improved description of the real measurement
process and a reduction in estimated variance. This approach is
therefore well-suited to the analysis of kinematic processes with
unknown changes in kinematic behaviour.

Keywords-component; Laser tracker; kinematic measurement;
hybrid system estimator IMM / RMIMM; uncertainty estimation;
Bayesian filtering

I. INTRODUCTION

Laser trackers have been widely and successfully used to
calibrate industrial robots for many years. The most common
calibration method is the static technique which means that
the robot moves from point to point, pausing at each to enable
calibration measurements to be made. In contrast, during
a kinematic technique (often loosely called “dynamic robot
calibration”) the robot does not pause at calibration points and
this can save a lot of time. But to apply a kinematic calibration
method, the kinematic uncertainty of the measuring process as
well as the dynamic model of the robot have to be known.

In addition to robot calibration, there is another important
class of application which would benefit from this knowledge.
This is free-form surface scanning in which a laser line scanner
is kinematically tracked as it is moved over a surface to be
measured. Both applications lead to the question: What is the
uncertainty in a trajectory measured kinematically by laser
tracker?

The laser tracker itself is a measurement device, which
follows a moving reflector and measures its 3D position in
spherical coordinates. Distance to the reflector is measured

by interferometer (IFM) or absolute distance meter (ADM)
and two optical angle encoders measure the direction to the
reflector. The retro-reflector returns the outgoing laser beam
back to the tracker where part of the return beam is directed
onto a position sensing device (PSD). Any lateral movement
of the reflector generates an offset signal at the PSD which is
used in a control loop to automatically point the laser beam
back to the centre of the reflector and to improve the angle
encoder readings. In a first approximation, Cartesian values of
a laser tracker 3D point can be calculated from the distance
and angle measurements as follows.

x = d ∗ cos(θ) ∗ sin(ϕ)
y = d ∗ sin(θ) ∗ sin(ϕ)
z = d ∗ cos(ϕ), (1)

where θ denotes the yaw angle, ϕ the pitch angle and d the
distance, compare with fig. 1. The angle and distance parame-
ters in (1) are not raw measurement values from the encoders
but are modified to account for other design parameters in the
laser tracker. Some current laser tracker designs are shown in
fig. 3.

For the analysis presented in this paper the kinematic
uncertainty of a Leica Laser Tracker AT901 was investigated.
An industrial robot was used to move a cat’s-eye retro-reflector
with constant velocity over a predefined 3D trajectory. During
the experiment, laser tracker measurements were triggered by
an external source. The internal control loop of the laser tracker
under test operates at a constant frequency of 3000 Hz. As a
part of this loop, the PSD outputs, the angle encoders readings
and the distances are stored with an associated timestamp.
These timestamps are generated at a frequency of 1 MHz and
therefore have a resolution of 1 µs. They are used to interpolate
measurements to match the timing of the trigger impulse so
that trigger impulse does not interrupt the normal measuring
process of the laser tracker. The final 3D point values are
therefore based on interpolated elements and are sent to an
application at an frequency of 4 Hz [1],[2].

II. KINEMATIC MEASUREMENT

The term “kinematic measurement” can be interpreted in
different ways, as shown in [3]. In this paper, a kinematic
laser tracker measurement is considered as a spatiotemporal
measurement of a moving reflector, hence the result can be
linked via the time axis with other measurements.
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Figure. 1. Common laser tracker

There are a number of existing methods for different
applications which can be used to analyse such kinematic
measurements. For example, [4] suggests adjustment method
in a post processing analysis and [5] suggests a Kalman Filter
as a real time method, but with some restrictions. Amongst
other issues, the probabilistic system model of the kinematic
process must be known and all error terms must have a
Gaussian distribution. To detect periodic patterns, a time series
analysis was suggested by [3]. However, none of the suggested
techniques is able to describe the 4D path uncertainty of
an arbitrary path in a real-time application which may have
different kinematic characteristics such as constant velocity,
different accelerations or variable turn rates.

In order to improve the analysis of laser tracker data it
is possible to utilize the state-space approach to modelling
dynamic systems. Here a dynamic system is one, which
changes its state over time. This approach focuses on the
state vector of the system which is under investigation. The
state vector is made up of all relevant information descriptive
of the system, such as position sequences. In the case of
a spatial tracking problem, the information is related to the
kinematic characteristics of the moving reflector. The reflector,
together with the laser tracker, can therefore be seen as a
dynamic system, which can be analysed with Bayesian filters.
If the kinematic characteristic of the path is not known in
advanced, this problem can be considered as a state estimation
problem of a hybrid system. In this case estimation is required
of the combination of the continuous state vector as well
as the discrete model. The discrete model reflects kinematic
characteristics, for example if the reflector moves at constant
velocity or on a curve, or if it is accelerating. Hybrid systems
have been extensively studied in the field of air traffic con-
trol [6],[7],[8],[9] autonomous vehicles and driving assistance
systems [10].

In the current paper the analysis is based on Bayesian
filtering and a hybrid system estimator to both estimate kine-
matic uncertainty and to improve it. The analyzed task is the
kinematic measurement of industrial robot and this analysis
is compared with the common alternative methods mentioned
above.

III. BAYESIAN FILTERING

The kinematic laser tracker measurement of a moving
reflector can be viewed as a dynamic system. To analyse a
dynamic system with the Bayesian filter approach two models
are required:

• A system model that describes the evolution of the system
over time.

• A measurement model relating the noisy data measure-
ments to the state.

If these models are available in a probabilistic form, the
state space formulation is ideally suited to the application of
Bayesian filters [11].

A Bayes filter calculates, a posterior, the probability dis-
tribution over the state vector xt at time t based on all past
measurements z1:t and all past control inputs of the system
model u1:t. In general a Bayes filter consists of a prediction
step and an update step. The prediction step at time t calculates
a prior probability density function (pdf) using a system model
and requires the pdf p (xt−1|z1:t−1). As described in [12] the
prior pdf can be calculated by

p (xt|z1:t−1,u1:t) =

∫
p (xt|xt−1,ut)

p (xt−1|z1:t−1,u1:t−1) dxt−1 (2)

The update step calculates the required posterior as follows

p (xt|z1:t,u1:t) =
p (zt|xt) p (xt|z1:t−1,u1:t)

p (zt|z1:t−1,u1:t)
(3)

Within the update step the current measurements zt modify
the prior pdf depending on the likelihood function, which is
defined by the measurement model. For the derivation of the
Bayes filter the assumption is made, that the state xt is a first-
order Markov chain. The variance of the resulting pdf after
the update step can be seen as an kinematic uncertainty, as
it includes all influences of measuring process as well as the
system process.

A standard kinematic laser tracker measurement can be seen
as a tracking problem, in which the system model is not known
and must be estimated. Due to the fact that the dynamic system
model of the kinematic process is often not accurately known
in advance, the analysis method should take several system
models into account. This can be done by a hybrid system
estimator approach.

A. System Model
A Kalman filter is a traditional Bayesian filter, but does

not perform very well to estimate the continuous state of a
reflector, because it is likely, that the model, on which the filter
bases, does not accurately represent the current behaviour of
the reflector at all times. Due to the unknown inputs u1:t of
the tracking system to the analysis, the usual approach is to
include the model inaccuracies into the process noise, which
reduces the accuracy of the state.

Estimation of both the continuous state and the discrete
model leads to a so-called hybrid estimation problem [6].
The hybrid systems used in this paper models the continuous
dynamic by difference equation and the discrete-state dynamics
by a finite Markov chain.
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A discrete-time stochastic hybrid system can be expressed
as follows

xt+1 = f i
t

(
xt,ut, w

i
t

)
zt = hi

t

(
xt, v

i
t

)
, (4)

where f i is the system model function of model i with its
system process noise w and hi is the measurement model
function of model i with its measurement noise v. The model
i is governed by the finite Markov-chain

µt+1 = Πµt, (5)

where Π = {πij} ∈ Rr×r is the transition probability matrix,
µt ∈ Rr is the model probability and r the count of models.
The state estimate can be expressed as

x̂t+1 =
r∑

i=1

x̂i
t+1p

(
mi

t+1|z1:t+1

)
, (6)

where x̂i
t+1 =

∫
xt+1p

(
xt+1|z1:t+1,m

i
)
dxt+1 is the state

estimate of the state xt+1 given the conditional probability,
that the model at time t+ 1 is mi

t+1 and is computed by the
state estimator matched to model i, based on [6]. Hence, the
estimator in equation (6) can be seen as a weighted sum with
the weights p

(
mi

t+1|z1:t+1

)
, which are the model probability

µi
t+1 of the model i at time tt+1.
The Interacting Multiple Model (IMM) filter is a widely

used hybrid system estimator due to its excellent performance
in comparison with other hybrid system estimators [6]. It
approximates a set of possible system models and calculates a
combination over all implemented models [8]. Possible models
of reflector manoeuvres can therefore be defined in advance,
depending on the expected kinematic process. In an IMM
filter, the implemented models can also have state vectors with
different dimensions. The author of [6] have proposed an im-
provement to the IMM-filter called Residual-Mean Interacting
Multiple Model (RMIMM). They have shown, that the model
estimation delay of a RMIMM filter is slightly better than the
one of an IMM filter. The different between the IMM and
the RMIMM is in the way in which weights are calculated
for equation (6) to reduce the false model estimation. This is
achieved by increasing the different between the likelihood of
the correct model and the others.

The combination of the different models is made according
to a general Markov model for the transition between the
states. An IMM / RMIMM filter consists of a bank of r
parallel Bayesian filters and a transition matrix, which defines
the transition probability between the states of each model
[7]. These filters are usually made up of a range of system
models, which are deployed by different Bayesian filters like
a Kalman– or Particle Filter [8], [13]. Three major steps are
carried out in an IMM / RMIMM filter:

• Interaction/Mixing
• Filter
• Estimate and Covariance Combination

The following description of these three steps is loosely based
on the derivation of [8]. For a simplified description the
Kalman filter is used as an example of a Bayesian filter.

1) Interaction/Mixing Step: The interaction/mixing step, is
the first step. Here the mixed inputs for each model are
calculated. Assuming a Kalman filter, the mixed inputs are
the means and the covariances for each filter, which can be
calculated as

x̂0j
t−1 =

r∑
i=1

µ
i|j
t−1x̂

i
t−1 j = 1, · · · , r

(7)

P 0j
t−1 =

r∑
i=1

µ
i|j
t−1

{
P i
t−1 +

[
x̂i
t−1 − x̂0j

t−1

]
(8)

[
x̂i
t−1 − x̂0j

t−1

]T}
j = 1, · · · , r

where x̂i
t−1 and P i

t−1 are the mean and covariance for the
model i at time step t − 1. The conditional probability µ

i|j
t−1,

that the system made the transition from model i to model j
at time t− 1 can be calculated as

µ
i|j
t−1 =

1

cj
πijµ

i
t−1 i, j = 1, · · · , r (9)

cj =
r∑

i=1

πijµ
i
t−1 j = 1, · · · , r (10)

where πij is the transition probability for each model mi and
mj according to the transition probability matrix of the Markov
model and cj is normalization factor.

2) Filter Step: In this second step, the Bayesian filters are
applied. Assuming Kalman filter for each model mi then the
prediction and update step are done as[

x̂−,i
t , P−,i

t

]
= KFp

(
x̂0j
t−1, P

0j
t−1, A

i
t−1, Q

i
t−1

)
(11)[

x̂i
t, P

i
t

]
= KFu

(
x̂−,i
t , P−,i

t , zt, H
i
t , R

i
t

)
(12)

where KFp ( · ) stands for the Kalman filter prediction step
and KFu ( · ) for the Klaman filter update step. A denotes the
system transition matrix and Q the system covariance matrix.
Both are derived from the system model mi. According to
the measurement model H represents the measurement matrix
and R the covariance matrix of the measurement model. In
addition to the mean and covariance the model probability for
each model mi must be calculated.

The probability for a IMM / RMIMM filter is determined as

µj
t =

1
cΛ

j
tcj j = 1, · · · , r (13)

where c is the normalization constant, calculated as

c =
r∑

j=1

Λj
tcj . (14)

Within a IMM filter the likelihood of the measurement for each
model is calculated as

Λj
t = N

(
dj
t ; 0, S

j
t

)
(15)

where dj
t are the residuals of the measurements and Sj

t is
the innovation covariance matrix for the model mj in the KF
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update step. The likelihood for the RMIMM filter is calculated
by

Λj
t =


Nj

t N(dj
t ;0,S

j
t )∑r

i=1 Ni
tN(dj

t ;0,S
j
t )

if d
j

t ̸= 0

N
(
dj
t ; 0, S

j
t

)
otherwise

(16)

with

N i
t =

{ ∥∥∥dit∥∥∥−1

if d
j

t ̸= 0

1 otherwise
(17)

where d
j

t is the mean value of the residuals in model i at
time t. The conditional likelihood Λj for each filter is directly
comparable to the data association problem. This problem
is well known by simultaneous localization and mapping
(SLAM) algorithms and has been extensively investigated [14].
[6] have pointed out the a IMM filter can be improved when the
difference between the likelihood values is increased. In SLAM
algorithms, more features are included in an augmented state
vector to obtain a greater difference between the likelihood
values and so avoid ambiguities [15].

3) Estimate and Covariance Combination: In this third
step, the combined state estimate and covariance are calculated
as

x̂t =
r∑

j=1

µj
t x̂

j
t

Pt =
r∑

j=1

µj
t

{
P j
t +

[
x̂j
t − x̂t

] [
x̂j
t − x̂t

]T}
. (18)

It can be seen, that the IMM / RMIMM filter is ideal suited to
the analysis of longer kinematic measurement where more than
one model exists in dynamic process. Due to the acceleration
there are at least two different models, at the beginning and
at the end of each kinematic movement, which is otherwise
considered as a constant velocity process.

B. Measurement Model

The Bayesian filter mentioned earlier also consists of mea-
surement model composed of a deterministic and a probabilis-
tic model. Equation (1) can be viewed as the deterministic
model and the probabilistic can be derived from it. Comparison
with equation (12) reveals that this model and its covariance
can change with each time step. This property is important
for the analysis of kinematic laser tracker measurements, due
to the fact, that a laser tracker generally consists of a range
measuring device as well as two angle encoders. This means,
that the uncertainty depends on the reflector’s position, which
changes every time step throughout a kinematic measurement.
In spite of some geometrical design differences, the 3-D point
variance of a laser tracker can be estimate via the uncertainty
propagation as a first-order approximation over

σ2
x =(cos θ sinϕ)

2
σ2
d + (−d sinϕ sin θ)

2
σ2
θ+

(d cosϕ cos θ)
2
σ2
ϕ

σ2
y =(sin θ sinϕ)

2
σ2
d + (d cos θ sinϕ)

2
σ2
θ+

(d cosϕ sin θ)
2
σ2
ϕ

σ2
z =(cosϕ)

2
σ2
d + (−d sinϕ)

2
σ2
ϕ, (19)

where σd denotes the standard deviation of distance, σϕ the
standard deviation of the pitch angle and σθ the standard
deviation of the yaw angle, see fig. 1. Equations (19) do not
take into account any correlations between the axes.

In [4] the author describes the synchronization between
some trigger pulses as the main source of uncertainty by
kinematic measurements for the Leica laser tracker model, as
the PSD control point is determined during the initialisation
of the laser tracker [16]. The synchronization uncertainty is
directly linked to the speed, which results in the first order
approximation

xk = x+ Vx · ts
yk = y + Vy · ts
zk = z + Vz · ts. (20)

Hence, a kinematic 3D variance can be expressed by

σ2
xk

= σ2
x + t2s σ

2
Vx

+ V 2
x σ2

ts

σ2
yk

= σ2
y + t2s σ

2
Vy

+ V 2
y σ2

ts

σ2
zk

= σ2
z + t2s σ

2
Vz

+ V 2
z σ2

ts , (21)

where ts represents the synchronization error and σts its stan-
dard deviation. V is the velocity and σV its standard deviation.
Here it is assumed that ts denotes the synchronization between
each trigger impulse as well as the internal synchronization
between the distance measuring device and the angle encoders.
Equation (20) and (21) are only valid for movement with
constant velocity.

In order to describe a kinematic 3D point uncertainty also
the environmental influences must also be taken into account.
In equations (19) it can clearly be seen that the kinematic 3D
point variance depends on position and synchronization. With
a full description of the measurement model and its uncer-
tainty, kinematic laser tracker measurements are appropriate
for analysis using a Bayesian filter.

IV. IMPLEMENTATION

The following section describes the analysis of a kinematic
laser tracker measurement using a Leica AT901 laser tracker
which followed a cat’s eye reflector manipulated by an indus-
trial robot. The predefined trajectory along which the reflector
was moved at a constant speed of 500 mm/s, can be seen in
fig. 5. Due to robot performance limitations, 500 mm/s was
the maximum constant speed for this trajectory. The trajectory
was defined by the edges of a cube with semicircles on its
sides. The robot first moved the reflector along the edges of
the cube and then around the semicircles.

A. Development of the System Model
With regard to the experiment design and the test trajectory,

three system models should be considered:
• Constant velocity model
• Constant acceleration model
• Coordinated turn model

The constant velocity of the reflector is expressed in a contin-
uous, white-noise acceleration model, where the velocity is a
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Wiener process according to [8]. Hence, the state space vector
of the first model is xI = [x ẋ y ẏ z ż]

T. The discrete-time
state equation is expressed as

xI
t+1 = diag

[
F I, F I, F I]xt + wI

t

F I =

1 ∆t 0
0 1 0
0 0 1

 (22)

with the sampling period ∆t. The covariance of the discrete-
time process noise wI

t is

QI = diag
[
QI

c, Q
I
c, Q

I
c

]
q̃I

QI
c =

[
1
3∆t3 1

2∆t2

1
2∆t2 ∆t

]
(23)

assuming q̃I is a constant power spectral density of the process
noise.

The model with a constant acceleration is expressed as

xII
t+1 = diag

[
F II, F II, F II]xt + wII

t

F II =

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1

 (24)

with the state vector x = [x ẋ ẍ y ẏ ÿ z ż z̈]
T after [8]. Here

the acceleration is a Wiener process and the covariance of the
discrete-time process noise wII

t is

QII = diag
[
QII

c , Q
II
c , Q

II
c

]
q̃II

QII
c =

 1
20∆t5 1

8∆t4 1
6∆t3

1
8∆t4 1

3∆t3 1
2∆t2

1
6∆t3 1

2∆t2 ∆t

 (25)

with the q̃II power spectral density of the process noise.
The coordinated turn model assumes a constant turn rate ω

in a navigation plane [9]. Here the turn rate is defined as the
norm of the angle velocity vector Ω and can be calculated as

ω = ∥Ω∥ =
|v × a|

v2
=

|v| |a|
v2

=
a

v
(26)

if Ω⊥v [9]. Fig. 2 shows the relationship between the velocity
vector v as well as the acceleration vector a in the navigation
plane, to which the angle velocity vector Ω is perpendicular.
The discrete time coordinated turn model can be expressed as

xIII
t+1 = diag

[
F III (ω) , F III (ω) , F III (ω) , 1

]
xt + ΓwIII

t

F III (ω) =

1 sin (ω∆t) /ω (1− cos (ω∆t)) /ω2

0 cos (ω∆t) sin (ω∆t) /ω
0 −ω sin (ω∆t) cos (ω∆t)


Γ =

0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 (27)

with the augmented state vector x = [x ẋ ẍ y ẏ ÿ z ż z̈ ω]
T,

based on [9].
The three system models should be sufficient to model the

kinematic process of the robot in hybrid system estimator
without loosing accuracy as in a Kalman filter, which considers

at

a

Ω

X

Z

Y

an

v

Figure. 2. Coordinated turn model.

Gimbal-mounted
steering mirror

Gimbal-mounted
beam source

Figure. 3. Different design types of laser trackers, either with a gimbal-
mounted beam steering mirror or with a gimbal-mounted beam source.

only one model. In the hybrid estimator, curves, the constant
velocities as well as the accelerations between each period, are
taken into consideration.

B. Development of the Measurement Model

In general, commercial laser trackers can be assigned to one
of two classes depending on design. There are laser trackers

• with a gimbal-mounted beam steering mirror and
• with a gimbal-mounted beam source.

Fig. 3 shows examples of different types of a laser tracker.
Calibration models have been published for both types of
laser trackers. A geometrical alignment model for the gimbal-
mounted beam source is presented in [17] and in [18]. The
Leica laser tracker AT901 belongs to the first group. All these
models describe only the geometrical alignment parameters.
These are not sufficient to calculate a precise probability
density function of a moving reflector which can be used in
a Bayesian filter algorithm, as they do not take into account
environmental and kinematic influences.

To develop a measurement model for a trajectory measured
kinematically by a Leica laser tracker AT901, the model
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described in [19] is augmented by additional terms which
represent kinematic as well as the environmental effects. A
group of 16 parameters are used in the geometrical alignment
model described in [19]. These parameters are:

• Transit axes offset e
• Mirror offset f
• Beam offset O1x O1y
• Cover plate offset O2x O2y
• Mirror tilt c
• Transit axis tilt, i
• Beam axis tilt Ix Iy
• Yaw angle encoder eccentricity Ex Ey
• Pitch angle encoder eccentricity Kx Ky
• Pitch angle offset j
• Distance parameter k.

This model is valid in both static and kinematic measurement,
but for kinematic measurement additional parameters must be
taken into consideration. A corrected value for the yaw angle
θc, the pitch angle ϕc and the distance dc can be calculated with
these parameters and the correction equations of [19] using the
following:

θc = fyaw (hθ)

ϕc = fpitch (hϕ)

dc = fdistance (hd) (28)

where h are parameter vectors containing the parameter for
the correction functions f of the yaw angle θ, the pitch angle
ϕ and the distance d.

To take environmental influences into account, the distance
distc must be additionally corrected with the formulas accord-
ing to [20], which depend on

• the temperature,
• the air pressure,
• the relative humidity,
• the wave length of the laser source and
• the measured distance.

If these parameters are stored in a vector hmeteo the meteo-
rology correction can be expressed in brief as

dć = fmeteo (hmeteo, dc) . (29)

To apply the equations (29), it is assumed that these represent
the current refractive index along the tracker’s laser beam.
After applying the full correction process a static 3D point
can be calculated with the equations (1) as

x = dć ∗ cos (θc) ∗ sin (ϕc)

y = dć ∗ sin (θc) ∗ sin (ϕc)

z = dć ∗ cos (ϕc) . (30)

Assumption that one delay time includes the delay time for
each component, i.e. the distance and the angle encoders
readings, a kinematic 3D point can be determined with

xk = dć ∗ cos (θc) ∗ sin (ϕc) + vxts + 1/2 axt
2
s

yk = dć ∗ sin (θc) ∗ sin (ϕc) + vyts + 1/2 ayt
2
s

zk = dć ∗ cos (ϕc) + vzts + 1/2 azt
2
s (31)

where v expresses the speed and a the acceleration for each
axis and ts the synchronization error.

The equations (28) to (31) describe a deterministic model
of a Leica laser tracker. However, a measurement model for a
Bayesian filter consists additionally of a probabilistic model.
This can be deduced with the variance propagation or with
the Monte Carlo Method [21]. For complex functions it is
simpler to use the Monte Carlo Method instead of the variance
propagation. In addition, the Monte Carlo Method avoid lin-
earisation errors [12]. Equations (31), in combination with the
Monte Carlo Method, can be interpreted as a kinematic virtual
laser tracker (kVLT) which determines the probability density
for any arbitrary point by applying 30 critical parameters. For
normal users it is not possible to get the PSD values during
tracking and so the angle standard deviation has to be adjusted
to include the behaviour of the PSD sensor. As equations
(29) do not consider a 3D refraction index, the angle encoder
readings must be further modified.

C. Combining within an IMM Filter

To implement the measurement model and the different
system models as described in IV-A, a Bayesian filter type
must be chosen. Specific details about the different types of
Bayesian filter can be found in [12] and [22]. This decision
depends on the model type, linear or non-linear, the distribution
of the parameter and the approximation error. The extended
Kalman filter were chosen in [8] for the non-linear coordinated
turn model and the Kalman filter for a constant velocity model.
Whereas in [13] the particle filter was used for all model types.

For all filters in the filter bank, it is assumed, that the
laser tracker is always the same, which measurement model is
known, and the measurement are normal distributed.The filter
update equation (12) can be rewritten as[

x̂i
t, P

i
t

]
= KFu

(
x̂−,i
t , P−,i

t ,zt,Ht, R
i
t

)
(32)

As can be seen from equation (21), the kinematic variance of a
point is dependent on the velocity and its variance. Estimated
velocity and its variance are different for the different filter
models. The laser tracker model of equation (31) is used to
determine for each time instance t a covariance matrix Ri

t as
follows

Ri
t = E

(
[xr − xr] [xr − xr]

T
)
, (33)

where xr is the state vector of (xk yk zk) and containing
the individual random variables according to the Monte Carlo
Method of equation (31).

Due to the assumption of a normally distributed measure-
ments, the linear constant velocity model and constant accel-
eration model are implemented in a Kalman filter, whereas
the non-linear coordinated turn model is implemented in an
Unscented Kalman filter. To achieve a higher accuracy the
Unscented Kalman filter is chosen instead of the Extend
Kalman filter. The unscented transformation is more accurate
for the propagation of the means and the covariances than
the linearisation, which is used by an Extended Kalman filter,
shown in [12] and [22]. As described in [12], the Unscented
Kalman filter is more convenient to use as the Particle Fil-
ter, if the underlying distribution is approximately a normal
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Figure. 4. Implemented IMM / RMIMM filter with the different typical steps.
The non-linear model is described by an Unscented Kalman filter (UKF),
whereas the other linear models are described by a normal Kalman filter (KF).

Anderson-Darling Lilliefors

normal distributed [%] 95.07 94.90

TABLE I
NORMAL DISTRIBUTION TEST

distribution. The implemented IMM / RMIMM filter is shown
in fig. 4. Due to the normal distribution the implemented
IMM / RMIMM can be seen as a Gaussian sum filter.

V. RESULTS

To determine if the measurement model can be considered
as normally distributed, two different test were made. The first
test is the Anderson-Darling test and the second one is the
Lilliefors test. Results are shown in table I. The Lilliefors test
based on the well known Kolmogorov-Smirnov test, but in
contrast to the Kolmogorov-Smirnov test, the Lilliefors test
can be applied even if the mean and covariance are unknown,
as described in [23]. For comparison, the Anderson-Darling
test was also applied. This is based on different statistics from
the Kolmogorov-Smirnov test and gives a better performance
[24].

For both tests, 7900 data points along the test trajectory,
as shown in fig. 5 were used in conjunction with the Monte-
Carlo method applied to equation (31) with 5000 samples. The
significant level α was set to 0.05 for both test. Both tests
show that the measurement model can be taken as normally
distributed. It is therefore justifiable to use the Kalman and
Unscented Kalman filter in a hybrid system model for the
further analysis, as suggested previously.

To compare the new analysis methods, i.e. the RMIMM filter
and the IMM filter, against more commonly used methods, i.e.

the specification of Leica and the Kalman Filter, all methods
were tested with the same data set.

The kinematic accuracy for a Leica Laser Tracker LTD500
is specified with ± 20− 40 µm/m, in [25], [1]. According to
[26] this specification can also be applied to the Leica Laser
Tracker AT901. Taking account of the reflector’s relatively
slow speed of approximately 500 mm/s, compared with the
tracker’s maximum tracking speed of 6 m/s, the lower bound
of 20 µm/m was chosen for the analysis. The results of this
specification are shown in fig. 5a, the range dependency is
clearly visible. For the commonly used Kalman filter method,
suggested in [5], the Leica specification was used as the
measurement model. The results of the Kalman filter method
are shown in fig. 5b. As expected, the standard deviation drops
significant from minimum 92 µm to 55 µm, but it is also clear
that the variances were set to very large values to cover the
inaccuracy of the applied model. This effect has already been
mentioned in section III Bayesian Filtering.

To improve the Kalman filter method, the RMIMM filter
and IMM filter were applied to the data set. Fig. 6 shows the
results and there is no noticeable difference between them.
Due to the slow speed of the experiment and the nearly still
stand at the model change points at the corners, the advantage
of a faster model detection of the RMIMM filter instead to
the IMM filter cannot be seen. In contrast, the difference
between the commonly used methods in fig. 5, and hybrid
algorithm methods in fig. 6 is obvious. With the coordinated
turn model, the hybrid filters are also capable of dealing with
cross-track deviations of the robot. They are also sensitive to
the low standard deviation of laser tracker measurement, which
is not the case with the more common Kalman filter. The
clear range dependency shows that the speed of 500 mm/s
is too slow, so the alignment errors and range dependency
overlap the kinematic uncertainty effects. Otherwise there must
be significant lower standard deviation at the corners, where
the speed drops nearly to zero in order to change direction
of movement as can be seen from fig. 7. The higher range
dependency at slower speeds emphasizes the importance of
reliable static laser tracker models, assuming the delay time
can be taken as ± 5 µs as claimed in [2] and [4]. Specifying
a delay time of zero could be justified by the post-processing
interpolation step, as discussed in section I Introduction.

Another advantage of the hybrid algorithms is, that they
avoid overshoots, which not only generate poor standard
deviation but also slightly wrong state estimates. As expected,
these overshoots are found at path corners where the system
model changes. One example of these overshoots is shown
in fig. 8. Hybrid algorithms successfully prevent overshoots,
due to their fast model detection. There is no occurrence of
overshoots where the RMIMM filter generates a faster model
detection than the IMM filter. In addition fig. 8 shows, that
there were no clear model change points at every corner. The
robot makes a small loop instead of a curve or sharp edge,
which leads to many more model changes than expected and
ultimately to calculation of a higher standard deviation by the
hybrid algorithms.

To compare all analysis methods, their mean standard devia-
tion were calculated and listed in table II. One can see that the
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Figure. 5. Standard analysis methods.
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Figure. 7. The reached speed for each point of the experiment.

IMM filter delivers the smallest mean standard deviation with
0.0239 mm, only slightly different to the RMIMM filter result.
This is depended on the long still stand time at the beginning
and at the end of the experiment. During these period, small
movements of the robot were interpreted as model changes by
the RMIMM filter which provided a higher standard deviation
as a result. It can be seen, therefore, that the hybrid filters
deliver roughly a 4 times better standard deviation than the
approximation of the manufacture and a 3 times better than
common Kalman filter approach.

Measured trajectory
IMM
RMIMM
KF

Figure. 8. Over shoots provided through the Kalman filter in comparison
with the estimation of the hybrid filter algorithms.

RMIMM IMM Approx. KF

Mean standard 0.0243 0.0239 0.1019 0.0735deviation [mm]

TABLE II
COMPARISON BETWEEN THE ANALYSIS METHODS

VI. CONCLUSION

In the presented example of a robot following a trajectory at
constant speed, it has been shown that its analysis as a hybrid
system can provide an estimation of the paths uncertainty. Due
to the slow speed adopted in the test, it was not possible
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Figure. 6. Hybrid systems analysis methods.

to determine if the RMIMM filter, in contrast to the more
common IMM filter, could achieve its expected faster model
detection. However, it was obvious that both hybrid system
filters, in conjunction with the augmented measurement model,
achieve a significantly better uncertainty estimation than a
Kalman filter or manufacturers approximation can provide. In
particular, the over shoots of the Kalman filter approach can
be avoided, which makes the proposed approach suitable for
more complex kinematic trajectories. Additionally, with the
capabilities of the augmented measurement model to reflect
local characteristics, it is possible to analyse the trajectory
in a more appropriate way. Even if the proposed approach
is also suitable for real-time applications, such as integration
in a robot control loop, the sampling rate of the laser tracker
must be considered.

The results reveal, that the alignment errors are more impor-
tant than synchronisation errors if the delay time is relatively
short. This effect is larger in a more far-range application.
As the environmental conditions have a significant influence
on an electromagnetic beam, it would be useful to have a
time-varying refractive index to correct all readings of a laser
tracker.

However, the analysis of a kinematically measured trajectory
with Bayesian filtering, in conjunction with a hybrid system
estimator, is a reasonable way to estimate and improve the
uncertainty. However, it must be remembered that the internal
system models must be roughly appropriate to the observed
process.

VII. OUTLOOK

Bayesian filters rely on the first-order Markov chain as-
sumption which is invalid if there are systematic effects not
taken into consideration. It is therefore necessary to generate
a kinematic reference to test the measurement model with the

objective of identifying additional, missing kinematic param-
eters which influence the system but are only noticeable at
higher speeds.

A benefit of adopting Bayesian filters is that the new
proposed approach is well suited for analyzing a trajectory
which has been observed by more than one laser tracker.
This sensor-fusion approach should lead to a significant lower
trajectory uncertainty.

With regard to the coordinated turn model, it is possible here
to calculate an approximation of the orientation angles. This
approximation could be used to improve a 6 DOF estimation
where Leica’s T-Cam (6 DOF tracking accessory) cannot
deliver readings because it has a measuring frequency of
100 Hz instead of the laser tracker’s 1000 Hz.
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