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Abstract—Fingerprinting-based localization meth-
ods relying on WiFi and GSM information provide
sufficient localization accuracy for many mobile phone
applications. Most of the existing approaches require
a training set consisting of geo-referenced fingerprints
to build a reference database. We propose a col-
laborative, semi-supervised WiFi+GSM fingerprinting
method where only a small fraction of all fingerprints
needs to be geo-referenced. Our approach enables in-
dexing of areas in the absence of GPS reception as often
found in urban spaces and indoors without manual
labeling of fingerprints. The method takes advantage of
the characteristic that the similarity of two fingerprints
correlates to the distance between their correspond-
ing location. By applying multidimensional scaling, a
topology estimation is generated and with the help of
a small set of geo-referenced fingerprints anchored to
physical locations. An evaluation with an urban-scale
data set shows that we can locate a mobile device with
a median error of 30m. While normally all fingerprints
of the training set need to be geo-referenced, with
our method, only 8% require geo-referencing. We fur-
ther show that the localization error decreases as new
fingerprints are added and converges to an accuracy
comparable to related work.

I. Introduction
Knowing the geographical position of a person enables

a large number of location-based mobile applications [1].
State-of-the-art mobile phones contain multiple technolo-
gies to provide such location information including GPS,
WiFi and GSM-based approaches. GPS provides accurate
positions in open sky conditions and less accurate ones
or none in urban and indoor areas [2]. These, however,
are places where people spend most of their time [3].
Thanks to the vast penetration of cellular and WiFi
networks, exploiting existing infrastructures has found
great interest. The achievable location accuracy has been
found to be sufficient for many mobile phone applications.
Additionally, WiFi- and GSM-based approaches have the
advantage of performing well in urban areas and indoor
venues [1] where GPS reception is limited. Recently, so-
called fingerprinting approaches have found great inter-
est in the research community for localization purposes.
A fingerprint consists of a list of access points (APs)
and their corresponding received signal strengths at a
given locations. The assumption is that each fingerprint
is unique across the space and thus uniquely represents

a particular geographical location. A reference database
is built with a training set consisting of geo-referenced
fingerprints. To be localized, a mobile device gathers signal
strength readings to obtain the fingerprints at the current
location and with the help of a fingerprinting algorithm,
the closest match in the reference database is found,
revealing the location. Bahl et al.’s RADAR localization
system [4] was a pioneer effort in that direction. In a
more recent work, LaMarca et al. [3], achieve 20 − 30
meters median localization accuracy in urban areas with
their Place Lab system. One of the key problems with
fingerprinting is that a set of fingerprint in close proximity
to a location of interest must be known. Thus, training
data is required to build a reference database consisting
of geo-referenced fingerprints. GPS is often used to obtain
the recording location of fingerprints. For collecting such
GPS-referenced fingerprints, approaches like war-driving
[5] and war-walking [6] became popular. War-walking
tends to take more time but provides better accuracy and
larger coverage in metropolitan areas as some regions in a
city are only accessible by pedestrians [6]. Fingerprinting
efforts can be minimized by e.g. geocoded information to
bootstrap fingerprinting databases [7]. Following a collab-
orative approach, fingerprint databases are automatically
updated when GPS and WiFi scanning is active on a
user’s phone [8]. Many of the existing methods assume the
availability of accurate GPS signals during the recording
of the training set. GPS reception, however, is not always
available in many urban areas as well as indoors, limiting
the possible indexing space significantly and thus the
usefulness of such localization systems. Hence, to provide
extensive coverage and high accuracy for urban position-
ing, methods are required to be able to index urban spaces
also in the absence of GPS-based reference information.
Existing commercial solutions for space indexation are
user surveys which come at a steep price: a large of-
fice building can cost $10,000 USD with no maintenance
included [9], and existing approaches require expensive
equipment [10] or rely on crowdsourced, or ’organic’,
methods [11], based on manual labeling of the reference
locations [12]. In this work we present a fingerprinting
approach which does not require a reference location for
each fingerprint in the training set. Only a small number
of anchor points is required. Our contribution is threefold:
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1) We propose a collaborative, semi-supervised WiFi and
GSM (termed WiFi+GSM in the following) fingerprinting
method that only require geo-referencing of a fraction of
the fingerprints by taking advantage of the characteristic
that the similarity between two fingerprints correlates
to the distance between the location of the recordings.
By applying Multidimensional Scaling (MDS) [13] on the
similarity information, we obtain a topology of fingerprints
which can be mapped to a geographical coordinate system
using a set of geo-referenced fingerprints serving as anchor
points. This reference topology can then be used to locate
new fingerprints. 2) The topology can be updated with
new fingerprints to increase the localization accuracy and
to extend the covered space and is therefore suitable for
a collaborative approach. 3) We present evaluation results
using an extensive urban data set that provides evidence
for the feasibility of our approach.

II. Related Work
In this work we investigate the potential of MDS for

generating a fingerprint topology estimation by relying on
the similarity between fingerprints. MDS is a statistical
method which optimizes the placement of samples in
an n-dimensional space in such a way that the pairwise
distances between the samples corresponds as good as
possible to a measured similarity between the samples.
Our assumption is that if we can come up with a similarity
measure between two fingerprints that corresponds to their
respective recording distance, MDS should be able to
generate a topology estimation which corresponds to the
physical location of the recorded fingerprints. MDS has
recently found interest for localization purposes. Shang
et al. [14] applied MDS to derive the position of nodes
in a wireless sensor network (WSN) based exclusively
on binary connectivity information of the sensors. The
approach first calculates the shortest path between all
nodes to obtain a pairwise distance matrix. Afterwards,
they apply MDS to obtain a relative topology estimation of
the network. This relative topology can be approximated
into a real topology if the position of at least three nodes
is known. The work was later extended in [15] to work
without knowledge of the entire connectivity. The authors
in [16] developed a localization algorithm based on MDS
and signal strength measurements (RSSI) in a WSN. In
their work the RSSI values among nodes with known
location were used to construct a map of the network with
MDS. Nodes with no location information used the map to
determine their locations. The inclusion of signal strength
instead of binary connectivity information to obtain a
distance estimation is shown to be more effective in both
simulations and experiments. Koo et al. in [17] apply MDS
to WiFi fingerprints. They extract dissimilarities between
pairs of WiFi APs from signal strength measurements.
Afterwards, they analyzed the dissimilarities to estimate
a geometric configuration of WiFi APs using MDS. To
validate the scheme, they conducted experiments on five

floors in an office building covering an area of 50m by 35m
on each floor with the result that WiFi APs were located
within a 10m error range. While they intend to locate
WiFi APs, we intend to locate mobile devices based on
the available WiFi and GSM information. The work that
is most comparable to our effort is presented by Pulkkinen
et al. in [18] where they generate a topology map based on
the similarity of WiFi fingerprints. They achieve a median
localization error of 1.5m by using MDS to generate the
reference database and a classic fingerprinting algorithm
for the positioning part. The approach in our work, on
the other hand, also uses MDS for locating fingerprints.
Further, their approach was only evaluated on one floor
of a building. For urban-scale deployment as envisioned
in our work, additional effects have to be taken into con-
sideration mainly due to the non-linear relation between
distance estimation and fingerprint similarity. In this work,
we address these issues and evaluate a method for urban-
scale positioning using both WiFi and GSM readings.

III. Method
Our localization approach consists of three steps: 1)

Building a reference topology from a set of training
fingerprints. 2) Providing a location estimation for new
fingerprints using the reference topology. 3) Including the
new fingerprint in the reference topology to refine and
extend it. Figure 1 schematically shows the process to
build the reference topology (top) and to obtain a location
estimation (bottom). To generate a reference topology,
WiFi and GSM fingerprints are collected À. Among all
fingerprints, a pairwise similarity measure is calculated
Á. Unreliable similarity measures are removed during
the pruning process Â. By applying MDS, a topology
estimation can be generated Ã. Hereby, MDS tries to
optimally place the fingerprints into a two-dimensional
configuration that retains the similarity relations between
fingerprint pairs. Using a minimal set of geo-referenced
fingerprints serving as anchor points, a non-linear mapping
to geographical locations is determined Ä. To obtain a lo-
cation estimation of a new fingerprint, the same procedure
is applied on a subset of the graph. Besides obtaining a
location estimation, the fingerprint can also be added to
the list of fingerprints of the reference topology which then
gets refined and can grow in size. These steps are described
in more detail in the following sections.

A. Generating a reference topology
a) Collecting fingerprints and generating a similarity

matrix: A fingerprint contains signal strength readings of
detectable APs and base stations referenced by their IDs
at a given location. Hereby, the set of fingerprints should
ideally have the following properties:

• Each fingerprint should be unique across the space to
uniquely reference a geographical location. I.e. if two
fingerprints are identical, they stem from the same
location.
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Fig. 1: Process to build the reference topology (top) and
to obtain a location estimation (bottom).

• For a given location, the fingerprints should not vary
over time.

• The similarity between fingerprints should correlate
to the distance between their recordings. Close fin-
gerprints should have a higher similarity compared to
those far apart.

However, in practice the fingerprints are effected by both
multipath and shadow fading. Our approach provides
robustness to mitigate their influences.

The last property is of great importance for our method.
We used the Tanimoto coefficient [19] as a metric to
determine the similarity between two fingerprints. This
measure has been used in other works for the comparison
of fingerprints [20]. The metric considers each fingerprint
as an n-dimensional vector ~Fi with one dimension for
each visible access point and the signal strength as the
magnitude in the corresponding direction. The Tanimoto
coefficient between two fingerprints ~F1 and ~F2 is then
calculated according to Equation 1:

T ( ~F1, ~F2) =
~F1 · ~F2∣∣∣∣∣∣ ~F1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ ~F2

∣∣∣∣∣∣2 − ~F1 · ~F2

. (1)

The coefficient is bounded between 0 and 1, with
T (F1, F2) = 0 if F1 and F2 have no APs in common and
T (F1, F2) = 1 if F1 and F2 being the same fingerprint.
The similarity matrix is then given by

S =

 s11 · · · s1m

...
. . .

...
sn1 · · · snm

 ; sij = T (Fi, Fj) . (2)

b) Pruning the similarity matrix to increase robust-
ness: As we will evaluate in Section V-A, the relation
between the Tanimoto similarity measure and the dis-
tance between two fingerprints is a monotone, non-linear
decaying function. A characteristic of this function is
its good discrimination capability within small distances

between two fingerprints and its weak performance when
the distance is large. To increase robustness against errors
introduced by the variance of the similarity estimation
from fingerprint-pairs far apart, we disregard their simi-
larity values. To do so, we consider our similarity matrix
S as a graph G with vertices for each fingerprint and edges
for all pairwise similarities. Hereby, we prune the graph by
removing all edges with similarity values below a threshold
θ.

In a next step, as some edges of graph G have been
removed, some zones of it might end up isolated. Thus,
we divide it into subgraphs by finding its connected com-
ponents with n > 3 nodes. Each subgraph is then fed into
the MDS algorithm to obtain an embedding into a two-
dimensional space.

c) Topology estimation using MDS: Multi dimen-
sional scaling is a method which represents measurements
of dissimilarity in a higher dimensional space among pairs
of objects as distances between points in a low dimensional
space. Through the analysis of dissimilarities between
pairs of objects, MDS estimates a mapping into a geo-
metric configuration in a low dimensional space by trying
to keep the pairwise original dissimilarity relations [13].
The MDS method takes dissimilarity values as input. We
take each subgraph from the previous step and transform
all edges into dissimilarities as follows:

s̄ij = 1/sij . (3)

By a calculating all shortest paths, we obtain a dissimi-
larity matrix S̄ for each subgraph which can be fed into
MDS. Supposed we have a set of n fingerprints and we are
able to estimate the dissimilarity s̄ij between all pairs of
fingerprints i and j, MDS finds a configuration represented
by a matrix X of size n × m where the entries represent
the positions of the n fingerprints in m dimensions. So
xia represents the relative position (or coordinate) of
fingerprint i in dimension a. Hence, the output of the MDS
method is X with

X =

 x11 . . . x1m

...
. . .

...
xn1 . . . xnm


[n×m]

, (4)

such that the euclidean distance dij for any two points is:

dij =

√√√√ m∑
a=1

(xia − xja)2
. (5)

As this is an optimization problem and dij is an estima-
tion, an error of estimation eij is introduced with

e2
ij = (dij − s̄ij)2

, (6)

and s̄ij being the dissimilarity, and dij the euclidean
distance in the MDS representation. Averaging e2

ij over all
pairs gives a measure of the error σr for the entire MDS
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representation, called Raw Stress [13]. MDS tries to find a
configuration X which minimizes σr:

σr (X) = min

∑
i<j

e2
ij

 = min

∑
i<j

(dij − s̄ij)2

 . (7)

An MDS embedding is performed for every subgraph
obtained during the pruning process.

d) Anchoring of the MDS output to geographical co-
ordinates: The position of the fingerprints estimated by
MDS are relative positions in an arbitrary two-dimensional
space. A transformation has to be applied to map the
MDS topology to geographical coordinates. Knowing the
geographical position of at least three fingerprints included
in the MDS topology, such a transformation can be found.
Hence, the output of the MDS method is passed through
an anchoring process to obtain a transformation into
geographic locations. The anchoring process is a regression
problem. Our method is comparable to the approach
presented in [13]. When all subgraphs have been passed
through the anchoring process, a global representation is
obtained. We now have a reference topology where all
fingerprints are assigned to a geographical location.

B. Fingerprint localization and updating the reference
topology

The obtained reference topology can be used for locating
new fingerprints, i.e. fingerprints which were not located
in the initial topology e.g. coming from new positioning
inquiries. To locate such a new fingerprint, the similarity
between a new fingerprint and each fingerprint in the cur-
rent topology is determined. The subset of all fingerprints
which yield a similarity value greater than θ with the new
fingerprint is selected and the same process as described
previously of calculating the dissimilarity matrix, applying
MDS and anchoring the map is performed for this subset.
The result is a location estimation of the fingerprint.
Additionally, this fingerprint can now be included into the
reference database and help the topology map to grow.
However, we only add the new fingerprint to our reference
database if the distortion of the topology is low. To eval-
uate this, we determine the fingerprint’s influence on the
existing topology by calculating the average displacement
of the nodes in the subgraph before and after the insertion
of the new fingerprint using the Haversine Formula [21]
with Equation 8:

e = 1
n

n∑
i=1

distance ([lati, longi] , [lati′ , longi′ ]) . (8)

Hereby [lati, longi] and [lati′ , longi′ ] are the current and
proposed locations of fingerprint i in the subgraph, respec-
tively. If e < λ with λ a given error threshold in meters,
the current topology map is updated adding the newly
located fingerprint to it. Figure 2 summarizes the process.

Arrival of new fingerprint

Finding set of at least 3 fingerprints with pairwise similarity > θ

Calculated dissimilarity matrix, topology 
estimation; perform anchoring, Return 

location estimation

No location estimation for 
fingerprint can be obtained

Include fingerprint in the 
reference topology

Skip fingerprint

Set found Set not found

Evaluate introduced error ē

ē ≤  λ ē >  λ 

Fig. 2: Operation scheme to locate a new fingerprint and
to consider its inclusion into the reference topology.

IV. Data Set
A real-world data set recorded in the city center of

Zurich was used to verify our approach. Three Nexus One
Android phones worn in a users’ pocket were used. Each
phone periodically recorded the ID and received signal
strength of all visible WiFi hotspots and GSM cell tow-
ers together with a timestamp. Additionally, the phones
recorded GPS location information which will serve as
ground truth in our evaluation. A sampling rate of 0.2Hz
was selected which resulted in the successful recording of
2576 fingerprints. The experiment was conducted during
day time and hence, normal conditions as the influence of
non-permanent obstacles such as pedestrians, and trams
or buses passing by were present. Figure 3 shows a heat
map generated from the locations where the fingerprints
were recorded (based on GPS information). The recording
space covers an area of 0.795km2. Our data set has a WiFi
space of 2028 dimensions i.e. APs, and a GSM space of 66
dimensions i.e. GSM cells. That means that the density
of WiFi APs is 30.73 APs per GSM cell. In terms of area
units, and considering GSM cells as circular areas of 200m2

size, this would correspond to 0.15 APs per square meter.
As we will compare the MDS-based location estimation
against the GPS samples to evaluate the approach, we
have to understand the accuracy of the GPS-provided
location estimations. The median accuracy of the GPS
samples is 12.5m. Hereby, the accuracy value defines the
95% confidence circle.

V. Evaluation
In this section we first evaluate the relationship be-

tween the similarity measure and the recording distance
between two fingerprints. Afterwards, we investigate the
accuracy of our MDS-based topology estimation. Hereby,
we investigate the influence of different pruning thresholds
θ. For each evaluation step, we compare the approach
with fingerprints generated i) with WiFi information, ii)
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Fig. 3: Distribution of the recorded GPS-referenced
WiFi+GSM fingerprints data set in the city center of
Zurich.

GSM information, and iii) WiFi+GSM information. As
our approach is designed for a collaborative system which
gradually grows as people are using it, we further evaluate
the evolution of the location accuracy as new fingerprints
are added. We use GPS information as ground truth for
the evaluation.

A. Fingerprint Similarity vs. Distance

We evaluate the relationship between the Tanimoto
similarity measure of two fingerprints and the distance
between their recordings. To do so, we calculate similar-
ity values between all fingerprint pairs in our data set
The relation between similarity measure and distance is
illustrated in Figure 4 for the three different fingerprint
sets WiFi, GSM and WiFi+GSM. The plots show for
each distance value (obtained from GPS information) the
mean similarity value together with the variance. The re-
lationship follows a non-linear, monotonic decaying curve.
The flattening for smaller similarities or larger distances,
respectively, causes an increased error rate in the distance
estimation by given similarity due to the non-negligible
influence of the variance. For example a similarity below
0.1 can be found at any point beyond 200m. Thus, no clear
discrimination of distances is possible in the low similarity
range. This effect is less influential for large similarities or
small distances, respectively.

By comparing the three relations, the figures show that
GSM has the highest variance. WiFi presents a steeper
slope in the low distance range than WiFi+GSM which
is required for good discrimination. However, WiFi+GSM
has a lower variance by providing a larger discrimination
range for distances than WiFi and is thus favored.
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Fig. 4: Mean and variance valuess for Tanimoto Similarity
Measures. a) WiFi, b) GSM, c) WiFi+GSM

B. Topology Estimation
We are now going to evaluate the localization accuracy

of our approach. Table II to Table IV list the localization
accuracy together with additional parameters. Table I
gives a description of the parameters. θ is the pruning
parameter as introduced previously. For each threshold,
we run the localization process 100 times with random
starting configurations. ẽ is the median localization error
in comparison to the GPS ground truth information. α
and β are the 25% and 75% error quantiles in meters,
respectively. σ is the variance of the median error for these
iterations. δ represents the percentage of fingerprints out
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TABLE I: Overview of evaluated parameters
Parameter Description

θ Pruning parameter, 0 ≤ θ ≤ 1
ẽ median localization error [m]
α 25% error quantiles [m]
β 75% error quantiles [m]
σ Variance of the median error
δ ratio of localized fingerprints [%]
ρ ratio of anchor points [%]

TABLE II: Summary of the algorithm performance for
different thresholds θ using WiFi-based fingerprints.

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 17 9 31 0.6 29 2.9
0.5 42 18 78 0.4 40 4.2
0.4 33 13 54 0.7 55 8.3
0.3 88 28 175 0.4 72 9.2
0.2 377 190 390 0.6 93 2.2
0.1 383 256 525 0.8 96 0.7
0.0 431 324 615 0.6 100 0.3

of the data set that were localized (and hence not pruned).
ρ represents the percentage of fingerprints out of the data
set that were used as anchor points.

Let us now have a closer look at some of the obtained
results. Generally, we obtain better results ( = lower ẽ )
by considering WiFi+GSM fingerprints compared to using
only WiFi or only GSM. By setting θ = 0, the similar-
ity graph is not pruned. Figure 5a shows the reference
topology results from the WiFi+GSM fingerprints in blue
together with the GPS ground truth in red. Ideally, the two
graphs completely overlap. This, however, is not the case.
Figure 5b shows a histogram of the corresponding error
distribution. The median localization accuracy is 574m.
By increasing θ, the similarity graph is being pruned.
Figure 6 shows the MDS-based topology reconstruction by
applying a pruning threshold θ = 0.5 on the WiFi+GSM
fingerprints. As listed in Table IV, of WiFi+GSM, only
δ = 60% of the fingerprints can be used for the reference
topology while the rest of the fingerprints do not fulfill the
required similarity criteria. However, the median accuracy
is now 30m. With a pruning threshold θ = 0.6, we achieve
a median accuracy of 26m while being able to localize 34%
of the fingerprints. With this, we see that by removing low
similarity values we are not able to locate all fingerprints
anymore but, on the other hand, the localization accuracy
increases significantly. Hence, our method can automati-
cally detect fingerprints which can not reliably be located
and for the remaining provide a location estimation with
an accuracy in a similar range as related work [3]. Only
8% of all fingerprints in the reference topology need to be
geo-referenced. This is far less than the 100% required in
state-of-the-art systems.

TABLE III: Summary of the algorithm performance for
different thresholds θ using GSM-based fingerprints.

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 286 161 708 0.16 94 1.8
0.5 201 130 309 0.06 98 0.3
0.4 273 160 397 0.08 99 0.3
0.3 300 191 605 0.12 99 0.3
0.2 466 259 859 0.11 100 0.3
0.1 577 389 733 0.09 100 0.3
0.0 640 483 893 0.13 100 0.3

TABLE IV: Summary of the algorithm performance for
different thresholds θ using WiFi+GSM-based finger-
prints.

θ ẽ [m] α [m] β [m] σ δ [%] ρ [%]
0.6 26 10 44 1.6 34 7.1
0.5 30 14 57 1.4 60 7.6
0.4 56 18 114 1.7 80 10.6
0.3 201 84 316 1.4 95 5.5
0.2 366 211 511 1.6 99 0.3
0.1 264 158 396 1.8 100 0.3
0.0 574 457 640 1.5 100 0.3

C. Evolution of the reference topology
Our approach fits a collaborative approach where the

localization estimation starts with a few fingerprints and
gradually grows by adding new ones. Hereby, at the begin-
ning, when only a few data points are present, the provided
localization is expected to be rather inaccurate or a local-
ization is not possible at all as the majority of similarities
stem from long distance measures and hence get pruned.
However, gradually, we expect a denser sampling of the
region resulting in smaller distances between fingerprints
and thus larger similarity values can be expected which
remain during the pruning step. With this, we expect the
localization method to provide more accurate results over
time. To investigate this behavior, we observe the relation
between median error rate and the number of considered
samples by adding samples. We start with a minimal set
of three fingerprints and gradually add new ones. Only
fingerprints that can be localized are considered. Figure 7
shows that the obtained result follows the expected trend
that the localization error decreases by gradually adding
new fingerprints arrive. The dotted red line represents the
median location accuracy obtained by Place Lab [3]. We
see a convergence towards a comparable error rate.

VI. Discussion

This work presents a fingerprinting method for localiz-
ing mobile devices in urban spaces using MDS-based em-
bedding of WiFi+GSM fingerprints to obtain a reference
topology. The novelty of our method is threefold:

• Only a fraction of the training set’s fingerprints needs
to be geo-referenced. This allows to include finger-
prints into reference databases also in the absence
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(a)

(b)

Fig. 5: Results from the topology reconstruction with
no pruning (θ = 0.0). a) map of the reconstructed
topology using WiFi+GSM fingerprints (blue) and their
actual location of recording from GPS information (red).
b) Histogram of the localization error by comparing the
estimated location of fingerprints to their actual position.

of GPS reception and does not require a manual
labeling.

• By removing low similarity values, increased robust-
ness against multipath, shadow fading and other
influences that affect similarity estimations can be
provided.

• The method is ideal for a collaborative approach:
Users provide a fingerprint to receive a location esti-
mation. Simultaneously, this fingerprint can be used
to refine and extend the topology estimation. Hence,
we can gradually increase the covered space without
requiring further efforts by the users.
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Fig. 6: Results from the topology reconstruction with
pruning (θ = 0.5). a) map of the reconstructed topology
using WiFi+GSM fingerprints (blue) and their actual
location of recording from GPS information (red). b)
Histogram of the localization error by comparing the
estimated location of fingerprints to their actual position.

Our evaluation shows that by increasing the pruning
threshold θ, more fingerprints are discarded and cannot be
located. However, for the remaining fingerprints, the accu-
racy of the localization increases. For θ = 0.5, our method
could locate 70% of the fingerprints with a median error
of 30m. Only 8% of the fingerprints were geo-referenced
and the rest could be positioned witout any corresponding
location informat but only considering their similarity. We
further show with our data set that the localization error
decreases as new fingerprints are added and converges to
an accuracy comparable to related work. The reason that a
fingerprint cannot be localized is that there are not enough
similar fingerprints to be found. A dense, uniform sampling
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Fig. 7: Evolution of the localization error by gradually
adding new fingerprints to the reference topology. Thresh-
old θ = 0.5

TABLE V: Summary of various performances of localiza-
tion algorithms.

Ref ω ẽ [m] ϕ [%] τ

DactyLoc WiFi+GSM 20-30 7 Urban
2011 [18] WiFi 1.5 8.7 Indoor
2010 [8] GSM SoA 100 Indoor
2010 [20] WiFi+acc P.L. 100 Urban
2008 [12] WiFi R.L. 100 Indoor
2007 [22] GSM 5 100 Indoor
2005 [3] WiFi 20-30 100 Urban
2000 [4] WiFi 8 100 Indoor

of the space would increase the ratio of fingerprints that
can be localized. Our system is designed in a way that this
ratio increases while using the system. Further, a minimal
density of WiFi access points in an urban area is required
so that signal from different networks overlap. The density
of access points in our experiment area was on average
1.5 access points every 10m2 circular area. We expect this
number to be reasonable for many urban areas and indoor
venues and hence, comparable results can be expected.

Table V provides a comparison of our method to differ-
ent existing related positioning methods. Columns present
following information: year and reference to the related
work, type of used information ω, reported median ac-
curacy ẽ, percentage of geo-referenced fingerprints in the
training set ϕ, area of application τ . SoA states for State-
Of-Art comparable accuracy, R.L. for Room-Level, and
P.L. for Place-Level accuracy.

As Table V shows, related literature reports that the
achievable median accuracy of fingerprinting approaches
yields under 10m for indoors, and 20 − 30m for urban
spaces. However, the accuracy of WiFi positioning tends
to vary from indoor to urban environments. While the
average accuracy is typically within few meters of the

actual position for indoors, sudden jumps in the estimated
positions are possible [23]. In section V we presented an
overview of the trade-off between the number of geo-
referenced fingerprints (and thus the deployment cost),
and the achievable accuracy, which according to [18] is
an urgent topic of research for such approaches. The
introduction of the pruning threshold θ makes possible to
handle this trade-off.

For a real-time implementation, the computational com-
plexity is a key factor: At the core of MDS is an eigen-
decomposition on an n × n symmetric matrix which for
classic MDS takes O

(
n3) time. However, it can be reduced

to O (n lgn) steps and easily parallelized for use with
large datasets [24]. When a new fingerprint arrives, it
takes O

(
C ·m · n+m(n+ 1)3) time for our algorithm

to generate location results. Hereby, n is the number
of closest fingerprints, m the number of anchor points,
usually m = 3, and C the cost of computing and accessing
each entry of the dissimilarity matrix built with the new
and the closest fingerprints. We expect the method to be
scalable to also work with large data sets.

Our approach faces similar limitations as traditional
fingerprinting methods have: If reference data in an area
is missing, our method is not able to determine a location.
However, our approach has the advantage to be able
to provide location estimations in regions where GPS
information is either unreliable or not present at all and
hence ideal for urban spaces and indoor venues. We see
a promising application of our method by combining it
with existing systems such as Place Lab [3] to extend their
functionality into areas where a GPS-based indexing is not
possible. GPS-referenced fingerprints obtained in regions
with good reception can serve as anchor points. With our
method the covered space can gradually grow as people
are using the system without the requirement of manual
labeling of fingerprints.
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