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Abstract—Global Navigation Satellite Systems (GNSS) 
positioning technology is vulnerable in a wide range of 
environments such as indoors or in urban canyons. Even with 
high sensitivity GNSS receivers, the positioning results are far 
from being reliable. Therefore, pseudolite positioning technology 
can be useful as a complement in such environments. Many 
studies have been carried out for pseudolite positioning in 
various applications, but for precise pseudolite positioning, the 
carrier phase measurements must be taken into consideration. 
Consequently, integer ambiguity resolution issues need to be 
dealt with. 

In this contribution, by processing double differenced static and 
kinematic pseudolite data, ambiguity resolution and validation 
issues for pseudolite positioning are analyzed. An introduction to 
pseudolite positioning technologies is presented at first, and then 
mathematical models for double differenced pseudolites 
positioning are introduced. Subsequently the parameter 
estimation procedures by least-squares and integer least-squares 
are presented. To search for the integer candidate, the efficient 
LAMBDA method, which is based on the integer least-squares, is 
utilized. Providing the integer candidates in hand, ambiguity 
validation procedures are conducted to validate the resolved 
integer ambiguities. With the validated integer ambiguities, an 
online stochastic model is implemented to improve the 
performance of ambiguity resolution in the static and kinematic 
cases. It has been shown that the integer least-squares is more 
reliable for ambiguity resolution and validation than integer 
rounding, and the ambiguity resolution and validation are highly 
affected by the pseudo-range measurements, the geometry of the 
pseudolites and the realistic stochastic model used. Moreover, the 
introduced online stochastic model is very effective for ambiguity 
resolution and validation in static and kinematic positioning in 
case of the signal block out occurs. 

Keywords-component; pseudolite positioning, ambiguity 
resolution, ambiguity validation, on-line stochastic model 

I.  INTRODUCTION  
The development of Global Navigation Satellite Systems 

(GNSS) has revolutionized the traditional surveying, geodesy 
and navigation for the past decades, and it has been widely 
applied nowadays to achieve reliable and accurate positioning 
results. However, when the GNSS signals transmit through a 
distance of 20, 000 km to the surface of the Earth, the strength 
of the signal is fairly weak to penetrate into the obstructions, 

such as indoors, urban canyons, which then results in an 
insufficient number of available satellites and a very poor 
geometry to conduct the reliable positioning. 

To overcome the problem of poor geometry and the 
insufficient of available satellite, ground-based pseudo-
satellites (pseudolites) have been designed to augment GNSS 
for both indoor and outdoor positioning. Theoretically, GNSS 
can be replaced by pseudolites completely for positioning, even 
though it is not practically applicable [9]. 

Pseudolites have been widely used to augment GNSS 
positioning. Considerable work has proved that even 
augmented with one pseudolite, the geometry of satellites can 
be dramatically improved [12]. As a matter of fact, the 
integration of pseudolites, GNSS and/ or INS can fully exert 
the flexibility of pseudolites to achieve good geometry and thus 
reliable results. Apart from augmenting other sensors, 
pseudolites can work independently and successfully in the 
areas where GNSS satellites signals are too weak to be tracked, 
such as indoors, underground car park, long tunnels, etc [1].  

Similar to GNSS positioning, there are also some 
challenging issues in pseudolite positioning. For instance, 
multipath effects, mathematical modeling of the pseudolite 
measurements, hardware, effects of linearization and 
troposphere delay [1], [12]. All these aspects more or less 
contribute to the performance of pseudolites positioning. As a 
consequence, the double differenced float solutions from the 
least-squares estimation are somehow biased, which then may 
lead to an unsuccessful integer ambiguity resolution. 

The problem of resolving the integer number of 
wavelengths in pseudolite positioning is similar as in the GNSS 
field. Traditionally, the integer ambiguities in pseudolite 
positioning are resolved by placing the rover on a known point 
to initialize, from which the integer ambiguity can be obtained 
by simply rounding the float solution to its nearest integer, the 
so-called integer rounding (IR) technique. However, there are 
no integer ambiguity validation procedures for IR, and it has 
been proved that the integer least-squares (ILS) is the best in 
terms of maximizing the success-rate [7]. So in this paper, 
instead of IR, we perform the integer ambiguity resolution by 
ILS, e.g. by the LAMBDA method [8], and by using ILS, 
integer ambiguity results can be more reliable and it is then 
more convenient to performance the ambiguity validation. 
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When the integer ambiguities have been correctly identified, 
they can be used to study the stochastic property of the 
measurements, such as the measurement quality. Providing this 
information, it is possible to predict the stochastic model for 
the coming epoch, especially for re-tracking a signal which has 
been obstructed in a short time, the performance of ambiguity 
resolution and validation can be greatly improved. 

Therefore, the contribution of this paper aims at researching 
the mathematical modeling for pseudolite positioning in terms 
of reliable ambiguity resolution and validation. The rest of this 
paper is organized as follows. In Section II, the double 
differenced functional and stochastic models for pseudolite 
positioning in static and kinematic modes have been presented. 
Section III analyzes the ambiguity resolution and validation 
techniques; in addition, the online stochastic modeling method 
is introduced. Section IV shows the experimental analysis by 
analyzing static and kinematic pseudolite data. The last section 
summarizes this contribution. 

II. MATHEMATICAL MODELING 

A. Mathematical modeling 
Pseudolite clocks and pseudolite related receiver clocks use 

inexpensive crystal oscillators and operate independently, 
which results in clock errors that are not negligible [9]. The 
pseudolite location in our experiment has been precisely 
determined so that there are no pseudolite location errors. To 
eliminate the other errors, the double differencing technique is 
utilized in the following [4]: 

1 Nρ ε
λ Φ∆∇Φ = ∆∇ + ∆∇ +   (1) 

PP ρ ε∆∇ = ∆∇ +   (2) 

where ∆∇  is the double differencing operator between 
pseudolites and receivers. Φ and P are the carrier phase and 
pseudo-range measurements respectively. λ  is the carrier phase 
wavelength, and ρ is the geometric distance between 
pseudolites and receivers. N  is the integer ambiguity vector. 
ε  represents the measurement error. The multipath error is 
also a major concern for indoor positioning. Despite the 
multipath errors appear to be constant in static mode, it is fairly 
hard to deal with these errors in kinematic mode [1]. So the 
multipath errors have been assumed to be randomized into the 
measurement errors instead and the measurement noises are 
enlarged accordingly.  

After linearization with an initial rover position, model (1) 
and (2) can be expressed as: 

y Ax v= +    (3) 

where y  is the vector of ‘observed-computed’ distance. x
denotes the baseline components rx  and the integer ambiguity 
N , and A  includes the relevant design matrices. v  is the 
measurement noise. Equation (3) is referred here as the 
functional model. 

Meanwhile, an appropriate stochastic model is required. As 
shown in the following equation.  

2 2 1
0 0D Q Pσ σ −= =   (4) 

D is the measurement variance matrix. 2
0σ is the a priori 

variance. Q and P are the covariance matrix and weight matrix 
respectively.  

A stochastic model describes the quality of the 
measurements. In practice, it is extremely difficult to capture 
the stochastic property of the measurements, especially in the 
case of pseudolite positioning, where the multipath is severe. 
As pointed out in [12], ‘the effect of multipath on the pseudo-
range observation is two orders of magnitude larger than on the 
carrier phase measurements’; this should be taken into 
consideration when constructing the stochastic model. 

In GNSS positioning, the stochastic model popularly used 
is the elevation dependent model. This model, however, is not 
suitable to be applied in pseudolite positioning. Instead, an 
empirical-value based model, which is assign the measurement 
accuracy based on empirical values, is often preferred. For 
reliable ambiguity resolution and validation, the empirical 
model is not sufficient, and as an alternative, an online 
stochastic model can be generated when the correct integer 
ambiguities have been resolved [3]. With this online stochastic 
model, which appropriately reflects the measurements quality 
and the condition scenarios of the receiver, the ambiguity 
resolution and validation in the coming epochs, particularly for 
the re-tracked satellites, can be greatly improved. 

B. Static and kinematic pseudolite positioning 
In GNSS positioning, the coordinates of the satellites are 

changing all the time, so that the satellite geometry in each 
epoch is different. However, for indoor pseudolite positioning, 
the pseudolites are fixed. Therefore, in case of the static 
pseudolite positioning, there is no changing in the pseudolite 
geometry with the time, and the design matrix iA in each epoch 
is the same, which can be expressed as follows: 

1

2 / 0
,          i

i
i

i

A
A a

A A
a I

A

λ
 
    = =      
 



   (5) 

where A is the design matrix for a session data processing 
in static positioning, and ia  is the line of sight vector. iA in 
each epoch is the same because of the stability of pseudolites. 
0  and I  are the zero matrix and identity matrix respectively. 
As a result, in an accumulated data processing, the precision of 
the estimated unknown parameters improve by a magnitude of 
the epoch number (in terms of variance of the measurement). 
So, it is unnecessary to repeat the computation of the design 
matrix for each epoch. Besides, it is worth mentioning that the 
correlation between the unknown parameters does not change. 
Presuming there are no temporal and spatial correlations 
among the epochs, the corresponding stochastic model can be 
specifically determined as: 

1 2( , ... )iQ blkdiag Q Q Q=       (6) 
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with iQ is the stochastic model for each epoch and 
blkdiag is a MATLAB function to build a diagonal matrix 
with the inputs. 

In pseudolite kinematic positioning, the geometry varies 
with the movement of the rover, and the design matrix can be 
constructed as follows: 

1
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  (7) 

The carrier phase integer ambiguity vector remains constant 
in each epoch, unless a cycle slip or signal block out occurs. 
The stochastic model for kinematic positioning is the same as 
the static positioning stochastic model, defined in equation (6). 
It should be noted this functional model can be equally realized 
by the Kalman filter as well. 

III. LEAST SQUARES AND INTEGER LEAST SQUARES 

A. Integer least-squares esimation 
By apply the classical least-squares approach, as well as the 

above defined mathematical models, the unknown parameters 
and their variance and covariance matrix can be estimated as: 

1ˆˆ ˆ( , ) ( )T T T
rx x N A PA A Py−= =   (8) 

ˆ ˆ ˆ1
ˆ
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ˆ ( ) r r

r

x NxT
x

x N N

Q Q
Q A PA

Q Q
−

 
 
 
 

= =  (9) 

ˆrx and N̂ are the so-called float solution with their 
variance and covariance matrices as ˆrxQ and 

N̂
Q  respectively. 

Recall the integer constraint of the ambiguity term N , further 
step is required to find this integer vector. Providing the 
estimates and their variance covariance matrix from least-
squares, the ILS problem is conducted by searching for an 
integer ambiguity vector N



 which minimizes the following 
objective function: 

ˆ
ˆ

2
1ˆ ˆ ˆ( ) ( )

N
N

T

Q
N N N N Q N N−=− − −

  

 (10) 

There are several ways of resolving the objective function 
in equation (10), an efficient searching procedures applied in 
this paper can be found in [8]. 

Generally, there are several integer candidates can be found 
from equation (10). To validate, or more precisely, to 
discriminate the most likely integer candidate from the second 
most likely integer candidate, statistics, such as the R-ratio test 

in [6] and W-ratio test in [2], which are defined in the 
following, are preferred.  
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where 1N


 and 2N


are the most and second most likely 
integers from LAMBDA. δ can be either a prior variance or a 
posteriori variance. By comparing these ambiguity validation 
statistics with critical values, the user decides whether accept 
the most likely integer or not. 

The ILS success-rate is also a very good indicator for 
ambiguity resolution. Comparing with the IR, ILS has been 
proved to be optimal in terms of maximizing the ambiguity 
resolution success-rate. Even though there is no exact formula 
to calculate, a good approximation of the ILS success-rate 
based on the ambiguity dilution of precision (ADOP) [13] can 
be applied, as shown in equation (13).  

1(2 ( ) 1)
2

n
ILSP

ADOP
≈ Φ −         (13) 

where n  is the ambiguity dimension and Φ is the 
cumulative normal distribution function. ADOP  is calculated 
with equation (14), as follows: 

1

ˆ
n

NADOP Q=   (14) 

B. Constructing the online stochastic model 
It has been mentioned that an empirical stochastic model 

can be used in pseudolite positioning. However, when the 
integer ambiguities have been correctly resolved, a covariance-
matching method can be used to construct a more realistic 
stochastic model for real-time applications. The covariance-
matching method has been further modified in [3] as the 
following term in a least-squares sense: 

' ' ' 1
1

'

0
( )1ˆ

i j
T

m
T T

i i j
j

PQ v v A A A Am −
−

−

−
=

= +∑  (15) 

where m indicates the width of moving windows. It should 
be noted that 'A represents the design matrix without the 
integer ambiguity term. The stochastic model constructed with 
equation (15) can be used in the computation of epoch 1i + , 
and by the virtue of this smoothing, it is more reliable than the 
empirical-value based model. More specifically, this model can 
be applied when re-tracking the lost pseudolite signals or an 
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outage of the receiver batteries and the integer ambiguity can 
be recovered shortly. 

IV. NUMERICAL ANALYSIS 
To analyze the ambiguity resolution and validation in the 

case of pseudolites static and kinematic positioning, two 
experiments, one single-frequency static and one single-
frequency kinematic, were carried out in the pseudolige test 
bed of Wuhan University. Six pseudolites are built on the 
ceiling of a building and the coordinates of the pseudolites 
have been precisely determined by a total station. After double 
differencing, there are five ambiguities to be determined. 

The base stations and rover stations (both static and 
kinematic) coordinates were surveyed, which means their 
precise coordinates were known as well. For static positioning, 
the rover was set up one a station, and 120 epochs were 
collected with a sampling rate of 2 seconds. For kinematic 
positioning, the rover was placed on a station for 11 epochs and 
then moved to another station for 11 epochs. The time intervals 
(around 20 epochs, 40 seconds) between two stations are not 
taken into consideration. The first epoch in each station is used 
for the analysis of kinematic positioning. So altogether, 18 
different stations were occupied and 18 epochs are taken into 
consideration for kinematic. The three dimensional illustration 
of the pseudolites, the base station and the rover station are 
shown in Figure 1 and 2. 

A. Ambiguity resolution and validation performance 
The correct integer ambiguities have been obtained 

beforehand for further analysis. The true rover positions were 
used to linearize equation (1) and (2), so as to obtain A  and y
in equation (3). A stochastic model with the pseudo-range 
measurement error of 0.38 meter and 0.01 cycle was firstly 
used. 

 
Figure 1: Static pseudolites and stations configuration 

 
Figure 2: Kinematic pseudolites and stations configuration 

For static positioning, the design matrix in equation (5) 
(first term for an accumulated solution and second term for an 
epoch by epoch solution) was applied. Firstly, the data was 
processed epoch by epoch. Unfortunately, the integer 
ambiguities in none of these epochs can be successfully 
resolved.  There are two potential reasons: 1) the pseudolite 
geometry is too weak, with the ILS success-rate as only 0.2914 
for each epoch and the ambiguity validation is unable to 
perform because the resolved most likely integer candidate 
cannot separate from the second most likely integer candidate. 
2) The bad quality of pseudo-range measurements. It should be 
noted that each carrier phase measurement contributes totally 
to the corresponding integer ambiguity and ambiguity 
resolution in an epoch by epoch solution entirely relies on the 
pseudo-range measurements. If the pseudo-range 
measurements are biased, the ambiguity resolution results will 
be biased as well. A better solution is to apply a more realistic 
stochastic model, which will be discussed later. 

If the static data was processed by accumulating epochs, the 
design matrix as the first term of equation (5) was applied. 
Unfortunately, the performance of ambiguity resolution doesn’t 
perform well as expected. Even though by accumulating the 
data in each epoch, the precision of the integer ambiguity 
variance covariance matrices improves by a magnitude of the 
epoch number, the correlation between individual ambiguities 
remains the same. In other words, the inside structure of the 
variance covariance matrix doesn’t change and this probably 
indicate that the ambiguity resolution performance is still 
highly suffered from the bad pseudo-range measurements no 
matter for one epoch or multi-epochs together. 
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Figure 3: The most likely integer ambiguities by accumulating the kinematic 

data  

 
Figure 4: Ambiguity validation statistic by R-ratio and W-ratio for 

accumulating the kinematic data  

In the case of kinematic positioning with epoch by epoch 
solution, the design matrices are derived the same as in static 
positioning. Among all the 18 stations, due to the bad 
geometry, the integer ambiguities cannot be successfully 
resolved either. Because the distance is short between 
pseudolites and receivers, and the region is limited for the 18 
rover stations, the ILS success-rate approximated by the ADOP 
in each epoch changes slightly and fluctuates around 0.7253. 

When processing the data by accumulating the epochs, the 
results are shown in Figure 3. The correct integer ambiguity 
vector is [-6 4 -1 9 10], and it can be seen from Figure 3 that 
from the fifth epoch onwards, we can get the correct integer 
ambiguity and the ILS success-rate becomes sufficiently close 
to 1. However, in the eighth epoch, the most likely integer 
candidate is not correct, which can be explained from the bad 
quality of the pseudo-range measurements in this epoch. As a 
matter of fact, the second most likely integer candidate from 
this epoch is the correct one, which implies that due to the 
biases in the pseudo-range measurements, particularly for this 
epoch, the resolved ambiguity float solution is biased, and 
consequently, the corresponding ambiguity resolution result is 
not correct. The ambiguity validation statistics by R-ratio and 

W-ratio are plotted in Figure 4. The more R-ratio closes to 1 
and Wa-ratio close to 0, the less likely we can separate the two 
most likely integer candidates; specifically can be seen from 
the eighth epoch. However, it is worth mentioning that these 
two statistics cannot validate the correctness of the resolved 
integer ambiguity, as for epoch 2 and 3, even though the most 
likely integer candidate can highly be separated from the 
second most likely one, it is not correct. Therefore, one 
important note is that these two ambiguity validation statistics 
can give reliable performance only in case of a high ILS 
success-rate, but not guaranteed because of the bias. 

B. Improving the ambiguity resolution and validation 
performance by the online stochastic model 

In order to have better ambiguity resolution and validation 
results, a more realistic stochastic model is indispensable. It has 
been shown that due to the poor geometry and the bad quality 
of pseudo-range measurements, it is extremely hard to 
construct a reliable stochastic model. However, when the 
correct integer ambiguity vector is available, the stochastic 
model can be re-constructed as shown in equation (15). By 
smoothing the residuals for several epochs (adjusted by the 
window width), the stochastic model begins to capture the 
essence of the measurements, and therefore becomes more 
reliable. With this newly built stochastic model, ambiguity 
resolution and validation performance can be quickly 
recovered in the case of a loss of signal, receiver batteries 
outage, etc. 

To illustrate the effects of the online stochastic model, the 
static and kinematic data have been re-processed with a 
window width of 9 epochs, which means that the data in the 
first 9 epochs were used to construct the stochastic model for 
the tenth epoch, and by moving the window, the stochastic 
model for the coming epoch can be constructed from the 
previous nine epochs. 

The static data was processed first with epoch by epoch. 
Apart from the first nine epochs, which were used to construct 
the stochastic model, all the other 111 epochs can resolve the 
integer ambiguities correctly, and from the 10th epoch, the ILS 
success-rate for each epoch is extremely close to 1.0. The 
ambiguity validation performances by R-ratio and W-ratio are 
also fairly good, as can be seen from Figure 5. Note the epoch 
number starts from 10. For the accumulated processing, there is 
no doubt that the integer ambiguity can be successfully 
resolved since even one epoch is enough to resolve the integer 
ambiguity by applying the online stochastic model. 

In the case of kinematic data, epoch by epoch ambiguity 
resolution performance is not as good as we expected. Among 
9 stations, only one station can successfully resolve the integer 
ambiguity. Recall that the rover was employed in each station 
for 10 epochs and then move to the next station (around 40 
seconds movement was not considered), it means that in a 
kinematic scenario, it is very difficult to reliably model the 
temporal stochastic property of measurements, especially when 
the epoch gap is too long. When processing the kinematic data 
by accumulating each epoch, the first time to fix requires only 
two stations, which is much better than the original stochastic 
model (5 stations for first time to fix).  
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Figure 5: Ambiguity validation statistic by R-ratio and W-ratio for static data 

processed epoch by epoch  

The whole kinematic data, including the static epochs on 
each station, was processed epoch by epoch using the online 
stochastic model. The results are fairly good as the integer 
ambiguities in 189 epochs (all together 198 epochs, 9 epochs 
were used to generate the online stochastic model) can be 
successfully resolved. From the 10th epoch onwards, the ILS 
success-rates are almost 1.0. The ambiguity validation statistics 
by R-ratio and Wa-ratio tests are plotted in Figure 6. 
Apparently, since the ILS success-rate approaches to 1.0, the 
ambiguity validation tests can be performed reliably after 9 
epochs because of the more realistic model constructed. In 
Figure 7, as an example, the quality of the online stochastic 
model for each station is shown by the Wa-ratio values. As we 
know that there are around 40 seconds between any two 
stations, the online stochastic model estimated from the 
previous station to the coming station is affected by the time 
gap between two stations, which then results in a sudden drop 
in the Wa-ratio values at the start of each station, as indicated 
by the red star in Figure 7. This clearly shows that in pseudolite 
kinematic positioning, the multipath varies with the 
surrounding obstructs and modeling the multipath is a 
challenging issue. 

According to the results from both the static and kinematic 
data sets, it can be concluded that by using the online stochastic 
model, the ambiguity resolution and validation performances 
can be improved dramatically, and in most cases, even 
instantaneous ambiguity resolution can be performed.  

 

 
Figure 6: Ambiguity validation statistic by R-ratio and W-ratio for the whole 

kinematic data processed epoch by epoch  

 
Figure 7: The quality of the online stochastic model at the beginning ofeach 

station 

V. CONCLUDING REMARKS 
This paper analyzes the ambiguity resolution and validation 

procedures for precise pseudolite positioning. Experimental 
results have shown that ambiguity resolution and validation is 
very difficult to be successfully conducted because of the 
pseudolites geometry (limited number of available satellites) 
and the measurement quality, which surfers highly from the 
multipath in the surrounding scenarios. For static pseudolite 
positioning by accumulation the epochs, the ambiguity 
variance and covariance matrices only changes the magnitude 
of the precision, however, the inter-correlations among the 
ambiguities are still the same. In case of kinematic positioning 
by accumulation, the movement of the receiver allows the 
geometry to improve not only by the precision but also by the 
inter-correlations and as a consequence, the integer ambiguity 
can be resolved in several epochs. 

Since, during the experiments, the real application of 
pseudolite positioning was bothered by the signal block out 
quite often, an online stochastic model is introduced to 
construct a more reliable and realistic stochastic model. 
According to the results presented, integer ambiguity resolution 

20 40 60 80 100 120
0

1000

2000
R

-ra
tio

20 40 60 80 100 120
0

50

Epoch number

W
a-

ra
tio

0 50 100 150
0

5000

R
-ra

tio

0 50 100 150
0

20

40

Epoch Number

W
a-

ra
tio

0 50 100 150 200
0

5

10

15

20

25

30

Epoch Number

W
a-

ra
tio

 

 
Wa-ratio
Start epoch of a station



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012 
 

and validation can be greatly improved, and even can be 
recovered instantaneously.  

For future work on precise pseudolite positioning, more 
attention should be paid to linearization error and the multipath 
effects in the kinematic scenarios.  
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