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Abstract— In this paper a map matching algorithm for multi 

floor indoor environments including guidance of a user is 

presented. Inertial sensor based pedestrian navigation systems 

are subject to drift. Maps are to eliminate that drift by matching 

the path to a map. In multi floor scenarios, we propose to use not 

only flat floor plans but also transitions like staircases as well as 

ladders and elevators. This is essential for an enhanced matching 

of a user path to a given 3D floor plan. Especially in industrial 

applications this is a crucial factor as also ladders and elevators 

exist. In contrast to other authors, this paper considers all of 

these objects. 3D position estimations from an Integrated 

Pedestrian Navigation System (IPNS) including an inertial 

system as well as a barometer and a magnetometer are used. 

Maps must be available, either from a prior Simultaneous 

Localization and Mapping (SLAM) survey or from facility maps. 

The new map representation is used to match real sensor data 

from the IPNS system to a map in a real time implementation. 

Furthermore an online guidance implementation is presented 

which is also based on the new 3D map representation. 

 

Keywords: Pedestrian Navigation, Indoor Navigation, Map 

Matching, Particle Filters, Multi-floor 

I.  INTRODUCTION 

In many applications, maps are known before the actual 
deployment. They greatly ease the navigation task for indoor 
pedestrian navigation because long term stability can be 
obtained. Map-Matching (MM) is used to fit an estimated path 
into these maps. It is often realized based on mathematical 
tools like Sequential Monte Carlo (SMC) methods, also 
referred to as particle filter: A large number of SMC particles is 
distributed over the digital map where rooms are represented as 
impenetrable walls. The particles approximate the probability 
density function of the user's position, moving into the 
direction of the estimated path and if a SMC particle collides 
with a wall, it is excluded from the Monte Carlo simulation.  

On behalf of computation time, the degree of freedom of 
this formerly 3D problem often is reduced to 2D, so the height 
of a trajectory is not considered. Depending on the map and 
walked path, SMC map matching can completely eliminate 
estimation drift. Even an unknown starting point can be 
estimated after some time.  

In the literature, often particle filters are used for map 
matching [1], [2], and [3]. Another example for map 
matching in pedestrian navigation is given in a paper from 
[4], showing the great capability of particle filters for indoor 
scenarios. The proposed backtracking method can go back 
in time, if a dead end room is found. But due to the 
implementation of the particle filter, the solution is not 
capable to be used online. 

In [5], the authors propose a map matching algorithm based 
on a particle filter, which is able to incorporate these nonlinear 
map-matching techniques. In that paper, the importance of 
having the map of the environment to reduce position drift of 
an inertial bases navigation system is pointed out again. 

 Our work is based on the 2D MM algorithm presented in 
[4], but we have reduced computation time with binary weights 
of each particle, to run it on a smart phone, [6]. 

To extend the 2D implementation to multi floor 3D MM, 
other research groups introduce additional virtual tracks, virtual 
floors or other approaches: In [7], a MM algorithm is presented 
using a virtual track. A virtual track is where all possible 
trajectories and paths in a building are assembled. This makes 
it very efficient when it is used with the pedestrian navigation 
system, but of course this works only good in areas, where a 
virtual track is available, for example in a corridor or on the 
street. For complex industrial areas, this approach seems not 
suitable. [8] is also using a particle filter based MM and 
proposes an intermediate virtual floor between staircases for 
3D maps. The map must be known well, as the direction of the 
stairs helps the MM algorithm to find a user position inside the 
staircase, even the speed is adjusted in the staircase, depending 
on the user climbing up or down. User motion inside the 
staircase is represented by an extended Markov model. Finally 
the new floor level is set depending on the model based 
information. This seems to be enough for standard staircases 
but the height information is not used although it could 
increase the robustness of the floor transition estimation.  The 
authors increase the robustness with movement models, see [8] 
for more details. But elevators or ladders for industrial facilities 
are not addressed.  

[9] also proposes the use of MM based on particle filters. 
Multiple floors are taken into account by adding additional 
platforms for every step of a stairway. The differential height 
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information of the foot mounted pedestrian navigation system 
is used to watch the transition from one step to another. For 
very detailed maps, this approach seems to be a good solution. 
However, obtaining maps with that level of detail in a real-
world mission might be a problem, as every step needs to be 
known; if one step is missing in the map, the proposed MM 
might fail in a staircase. Furthermore, ladders and elevators 
have not been addressed in the paper.  

In this present paper, we propose a new map representation 
where rooms are represented as rectangles with additional 
information like doors or transitions. Staircases are represented 
as sloping rectangles and elevators and ladders as vertical 
rectangles that can be traversed by the user. The accurate 
height estimation from IMU and barometer measurements is 
gainfully exploited by imposing an additional constraint for 
each particle, finally matching the estimated trajectory to the 
multi-floor map. Even slightly inaccurate height profiles due to 
barometric drift lead to correct estimation results, which shows 
the robustness of our approach. 

The new map representation is also very profitable for 
personal guidance in the new map. Our guidance approach will 
also be presented. 

Results from simulation and real-world test runs will 
demonstrate the capabilities of our real-time implementation of  
map matching and guidance.  

II. SCENARIO AND ENVIRONMENTAL CONDITIONS 

A. Scenarios 

One of the intended scenarios is the use in chemistry plants. 
The environment consists of multiple rooms, floors and 
platforms without reliable GPS availability. Many vertical 
connections such as stairs and ladders yield a very complex 
map. Typically, external workers are on-site for maintenance 
only for short times, and might be unfamiliar with the 
environment. Personal navigation systems support the user in 
finding quick and safe ways, and therefore reduce costs and 
risk. 3D Maps are available from construction plans. 

Another scenario is the deployment of first responders on 
major events in complex buildings like sport arenas or official 
buildings. When using multi floor map matching combined 
with a personal dead reckoning system, first responders will 
find their way fast and easily. 

B. Environmental and hardware conditions 

For environments as described above, GNSS availability 
often cannot be guaranteed and multi path can mitigate the 
accuracy especially in an industrial outdoor environment or in 
indoor environments.   

The position information from any inertial sensor based 
pedestrian navigation system is always subject to drift if no 
assumptions can be made about the environment. Beside 
position drift, another challenge is to obtain long-term stable 
heading information, so often an electronic compass is used but 
with the disadvantage of the vulnerability to iron effects at 

plants or indoors. The map matching algorithm eliminates this 
drift.  

Another constraint is the mobile computing platform where 
all calculations have to be performed. 

C. Specialities in pedestrian navigation 

In pedestrian navigation, a user will always walk on the 
floor, so it’s not necessary to model a true 3D environment 
with three full spatial degrees of freedom. Movement is only 
possible in rooms, on stairs, elevators and ladders. Even the 
height over ground can be neglected, knowing the exact height 
in a room doesn’t provide more information for a user. But of 
course the transition to other floors must be detected when a 
multi floor scenario is present. 

D. Maps 

 Currently, there is no common  standard for indoor map 
data. In most practical cases, it is still necessary to compile a 
digital map for MM using different sources like 2D or 3D plans 
in a computer-aided process supervised by a human operator. 
In any case, when digitalizing a given map, meta information 
about transitions between rooms and room numbers must be 
provided to realize map matching and guidance. For unmapped 
buildings, laser based Simultaneous Localization and Mapping 
(SLAM) methods for pedestrian indoor navigation [4] can be 
used for 3D maps, but meta information must still be added in 
any case. 

 

III. DUAL IMU SYSTEM 

The sensor basis for the approach is a Dual IMU System, 
which takes advantage of Zero Velocity Updates from a foot 
mounted IMU and records the torso dynamics from a 
second, torso mounted unit (IMU, MAG, BARO). The torso 
setup can be extended with a laser or a camera sensor, see 
Fig. 1. 

 

 
Fig. 1: Dual IMU system: with GPS, laser, camera, IMU, MAG, BARO and 

a foot IMU 

 
Due to the Dual IMU concept a tightly coupled data fusion 

between torso and foot unit is possible resulting in an only 
slightly drifting solution where mainly attitude errors remain in 
the system due to magnetic field anomalies in indoor scenarios.  
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IV. HARDWARE 

Processing the building information to solve the multi-
modal problem of map-matching requires computational effort. 
Often particle filters are used but those cause a high 
computational load. Especially when the user motion on a 3D 
map shall be tracked, special adaptations of the SMC 
estimation process are essential for achieving real-time 
performance on a portable system Therefore we propose a 
simplified map-matching particle filter using the compass 
aided navigation solution of the dual IMU system which is 
slightly drifting with time. The connection between computer 
and Dual IMU System is realized as a USB-serial connection to 
the torso unit and a Bluetooth connection to the foot mounted 
IMU. The navigation result of the torso unit is sent to the map 
matching filter. The application is programmed in C++ using 
Qt libraries and is also used to control the Dual IMU system 
and to display online results. 

V. PARTICLE FILTER 

In this chapter the functionality of our reduced particle filter 
will be demonstrated based on a standard Bootstrap particle 
filter implementation [10]. Particle filters are used to estimate 
the state of a system as a statistic state where the corresponding 
probability density function (PDF) is approximated 
numerically. This can be used, if the density function is not 
Gaussian for example for multi mode applications like map 
matching.  

The system model may be given by: 

kkk wxfx   )( 1    (1) 

with a corresponding measurement model  

kkk vxhy   )( 1 .   (2) 

System noise kw and measurement noise kv are assumed 

to be uncorrelated and white noise with their probability 

density function wkp and vkp  which does not need to be 

Gaussian. The distribution of a given probability distribution 

1 1( )k kp x Y   is approximated with a number of N  particles 

1

i

kx   and the approximation error disappears for N  . The 

particles are randomly generated (operator: ) to approximate 
the given probability distribution function: 

1 1 1( )i

k k kx p x Y   ,   (3) 

assuming a Markov process, with a density depending on 
the actual system state with regard to all available observations. 
Then the probability density can be written as a weighted sum 

with the weight 
i for each particle:  

 1 1 1 1

1

( ) ( )
N

i i

k k k k

i

p x Y x x    



          (4) 

where ( )  represents the Dirac function. 

 

 

PROPAGATION: 

To propagate the probability density in time with given 

system noise but moved with the mean value 1( )kf x  , it 

can be written:  

 1 1( ) ( ( ))k k wk k kp x x p x f x    (5) 

and taken into account the Chapman Kolmogorov 
equation for Markov processes, the propagated density 
function can be written as:  

 1 1

1

( ) ( ( ))
N

i

k k wk k k

i

p x Y p x f x 



     (6) 

This means, particles are updated with randomly 

generated numbers following the distribution  wkp  , the 

weights 
i are not updated during propagation. 

 

ESTIMATION: 

For given system observations or measurements 1kY  , an 

update of the weights 
i  is calculated following 

measurement and measurement noise: 

, ( ( ))i i i

vk k kp y h x c        (7) 

where c normalizes the sum of all weights to 1. 

 

 

RESAMPLING: 

To avoid degeneration of the particle approximation, the 
weights must be resampled yielding the same weight for 
each particle. 

 

ADAPTIONS 

For our map matching applications for indoor scenarios, 
a particle filter comes into operation to estimate the position 
x and y with a reduced calculation burden. This is realized 
by reducing the particle weight to a binary weight: 

   0,1i    (8) 

so that only the number of particles per area (n/m
2
) 

describe the shape of the 2-dimensional density function. 
With this reduction, the high calculation burden when 
calculating the the weights in equation (7) for estimation 
and resampling steps can be reduced significantly. The filter 
finally is realized as follows:  

 The estimation step is simplified by setting the 

weight to zero, if a particle is walking “through” a 

wall and it can be deleted. 

 As a consequence, in the resampling step, a number 

of M new particles have to be generated to maintain 
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a constant number of N particles. Therefore new 

samples are reproduced from the actual, reduced 

distribution 1( )k kp x Y  with the new weights
,i 

. 

simplest very fast way to do so is to randomly 

select from the number of (N-M) particles and 

reproduce those. 

 the propagation step is unchanged: all particles are 

propagated with a generated random vector, 

covering the probability density function of the 

system noise. 
 

The density function for the propagation step is shown in 
Fig. 2, realized with two system noise parameters: step 
length noise and angle estimation noise. This yields a non 
Gaussian distribution but can easily be used in prediction 
steps in a particle filter. This particle implementation is 
realized for a 2D propagation of particles. 

 

  
Fig. 2: Density function for PF-prediction (one foot step) 

 

VI. 3D MAP REPRESENTATION AND PARTICLE PREDICTION 

Based on our previous 2D particle filter work and in order 
to restrict the computational load when having a 3D map, we 
propose to exploit the fact that a user will always walk on the 
floor. Even if a user is going upstairs, he will stay on the stairs. 
So we propose to use a new representation of the map with 
three possible objects: 

 Room: bounding walls, transitions to other objects 

 Stairs: inclined planes with bounding lines and 
transitions to other classes 

 Ladders/elevators: vertical rectangle with bounding 
lines 

 Additional obstacles in a room (fine path planning) 

An example of a building can be seen in Fig. 3 with rooms, 
stairs and a ladder. The transitions between the classes are 
marked in green representing the area where particles can 
change their class affiliation.  

 

Fig. 3: 3D map with rooms, stairs ladders and additional obstacles in room 

 

Fig. 4: Tolerance regions around map objects 

 

To move particles in the map, the navigation solution of the 
pedestrian navigation system is used from each foot step (dx, 
dy, dz), so 2D position and the estimated height is given which 
is estimated by barometer and foot sensor. With this input, 
every particle in the map is moved in the given direction with 
the noise as described above. Now, the following constraints 
are given for each particle: 

 A particle cannot move through a wall 

 A particle cannot enter stairs or ladders from behind 

 A particle cannot jump into the air, it can only stay 
near the floor. In the case of the stairs, the position 
must correspond to the given height.  

 A particle can leave stairs and ladders only through 
the transitions 
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So for each particle and for every foot step, a collision test 

has to be performed. If a particle violates the constraint, then its 
probability will be set to zero, and it gets deleted. As described 
above, a particle will always stay near the floor, so a tolerance 
region has to be defined as the solution of the IPNS slightly 
drifts in the horizontal position as well as vertically. Fig. 4 
presents an example for tolerance regions. 

 

Fig. 5: Simulation results of the map matching filter in an office 

building, particles are small, cyan crosses, clusters are black 
circles. The evolution of the particles is visualized from uniform 

distribution to the final plot which shows the convergence of the 

particles. Exact time stamps are indicated in each sub plot. 
 

VII.  POSITIONING BASED ON PARTICLE CLUSTERS 

The particles represent the probability of the actual 
position. The particles can be spread over a region and the 
distribution often is multimodal due to multiple possibilities at 
the beginning of a trajectory. To find the most likely 
position(s), the particle distribution is analyzed:  

1. Initialization with a uniform distribution of particles 
over the map (position estimation not yet possible if 
starting point is unknown)  

2. After some filter steps, several groups of particles may 
have been formed. At this point it is worth finding 
groups of particles using k-means cluster analysis. 
(multiple user positions are possible) 

3. Finally, if only one cluster is left, a convergence point 
is reached and a good estimation of the position can be 
calculated using the center of gravity of the cluster. 
(one position found) 

Fig. 5 shows simulation results of the map matching and 
the cluster analysis over time. The evolution of the particle 
cloud is shown with 4 subplots in time steps of about 25s, the 
exact time slot can be found at each subplot. The circles 
represent clusters, the blue crosses represent particles. After 
89.55 seconds, a convergence point is reached as only one 
valid cluster is left. In the next section, the simulation is 
presented in detail. 

VIII. SIMULATION RESULTS 

In this section results of the 3D map matching particle filter 
are presented. To see the theoretical positioning accuracy, a 
simple pedestrian navigation system simulation based on 
random step lengths on a given trajectory in an office building 
is implemented. The ground truth trajectory is calculated and 
after adding correlated noise in heading and step length a 
realistic simulation of a slightly drifting IPNS system is 
obtained. The drift of the pure IPNS solution is several meters 
after 100s. Now by using the proposed map matching 
algorithm, the error is not growing anymore, as soon as the 
estimation has converged (t=40s). Fig. 6 shows several 
simulation runs on the same trajectory. Of course the 
positioning error and convergence time heavily depend on the 
size of open rooms and the variety of the environment. In the 
present case, the long term accuracy is around 1.5m. 

 

Fig. 6: Simulation results for several runs with ground truth: positioning 

errors from IPNS (blue) and map matching filter (red), convergence time 
around 40s 
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Fig.7: Real data results of the IPNS (red) system and map matching 

particle filter (particles cyan, cluster black circle).The evolution over time 

is shown:  At the beginning, the particles are distributed over the whole 
building on every floor. although  the navigation solution(red) shows more 

and more drift, the track is successfully matched to the map (particle 

cloud). 
 

IX. REAL DATA RESULTS 

In this section, the mapping results with real IPNS data will 
be presented. Fig. 7 shows the evolution of the drifting 
navigation solution of the IPNS system due to inertial drift in 
(red). The particle filter solution with the cluster point can be 
seen in black. Particles are plotted in cyan. At the beginning all 
floors of the building are possible, which is represented by the 
fact that the particles are distributed all over the building. After 
walking several corners, the walked path can only be realized 

on three remaining floors without collisions. When walking 
further, the final position is estimated as a point at the end of 
the corridor. Now the estimated IPNS trajectory is matched to 
the map successfully and without knowing on which floor the 
user has started, even the correct floor was found successfully. 
This map matching algorithm is now implemented on our real-
time system and is calculated online. The computational 
burden is very low due to a fast implementation in C++: The 
particle filter runs 10 times faster than real time for the given 
office building. 

 

X. PATH PLANING WITH THE 3D MAP 

To show what else can be done with the presented 3D map, 
this section will propose how to guide a user inside a building 
from a known point to a known destination. Therefore an 
optimal path has to be planned with the lowest cost. When 
using the proposed 3D map from this paper, implementing an 
optimal path planner is a straight forward task.  

For every object (room, stair, ladder) a dedicated cost per 
meter is saved. So when traversing objects, the sum of the cost 
can be calculated. If only a part of an object is crossed, the cost 
can also be estimated based on the percentage of the way 
through. Stairs and ladders for example have higher costs than 
rooms.  

There are 3 classes of path planning [11]: 

 Cell based path planning  

 Roadmap based path planning 

 Potential field path planning 

We have chosen the roadmap based approach, because we 
have not too many points to watch in our maps as we are 
regarding only transitions. Furthermore, potential field path 
planning as well as a cell based approach need much more 
computation time because calculated grid needs to be small 
enough to find a way even in small rooms. 

 

Fig. 8: Global path planning graph, all door nodes are automatically 
connected with all others in a room. Path starts in the lower left room and 

stops in the upper right. 
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We have decided to implement a road map based path 

planning [11]. We propose a 2 step graph: 

 For global path planning between rooms a graph is 
established by automatically connecting each 
transition with all others (Fig.8) 

 Fine path planning can be done in rooms that have 
additional obstacles (for example furniture or cabins, 
etc.). From this information, a visibility graph is 
established inside these rooms. (Fig. 9) 

 The global graph is established with nodes for every 
transition between two objects. Fig. 8 shows such a graph for 
one floor of an office building with an edge for every possible 
path through every object. The nodes are automatically 
introduced by connecting each transition with all other 
transitions in one room. For better visibility and representation 
the transitions are extended with 50cm lines inside and outside.  

 

Fig. 9: Fine path planning with a visibility graph, all obstacles(dark blue) 

are exposed as rectangles with 25cm clearance 

 

Often rooms have some obstacles which are not worth to be 
treated as an extra object but still have to be taken into account, 
for example toilet cabins or tables. Therefore we propose to use 
a fine path planning, based on a visibility graph, which is 
introduced in [11]. Fig. 9 shows the visibility graph of two 
rooms in an office building. All dark blue obstacle lines are 
treated as small rectangles with a clearance of 25cm so that the 
connections cannot cross them but they start at the corners of 
the rectangle. With this approach, it is possible to find a 
visibility graph for each room, that has additional obstacles. 
Inside this graph the shortest way out can be found without 
crossing obstacles. To reduce the computation burden, only if 
an object is used in the global path, then the fine planning is 
actuated.  

 

Fig. 10: Global and fine path planning in combination  

 

Finally to find the shortest path in both, global and fine 
graph we are using the A* algorithm [11] to save computation 
time. It finds one of the fastest ways but does not search the 
whole graph. Fig. 10 shows an example of a short path with 
global and fine planning in an office building: The global path 
planning starts inside a simple room, finds the way out through 
the only door to the corridor. Then the shortest way to the bath 
room is taken. Inside the bath room the fine path planning finds 
the destination which might be a toilet cabin without crossing 
cabin walls.  

Fig. 11 shows another path planning example with multiple 
floors. The computational burden is mainly the calculation of 
the graph which must only be done once. The A* algorithm is 
implemented in C++ and the update rate needs not to be higher 
than 1Hz so even for large buildings, the calculation time is not 
a problem at all. For example for finding a path in the office 
building presented above from floor 1 to 5 over a distance of 
200 m, a computation time of only 0.15s is needed.  

This path planning is also used for online path planning and 
is updated at 1 Hz. But we do not have an audio user interface 
which tells the user where to go, but a graphical user interface 
is provided which is implemented in Qt. 

 
Fig. 11: Multi floor path planning example. This is also used in our online 

implementation, the results are the same. 
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XI. CONCLUSION 

Map matching in a 3D environment like industrial plants or 
buildings can profit from a 3D map representation where 
ladders, elevators and stairs also can be taken into account and 
improve the map matching during the vertical movement. 
Especially vertical ladders have not been addressed in other 
papers. All these objects are all included in the presented new 
3D map. It has been shown, that the presented particle filter 
based map matching algorithm can match a drifting user path 
into this 3D map without knowing a starting point. Simulation 
results as well as real data tests have been presented showing 
the benefit of the 3D map representation and the real time 
capability. 

Furthermore, the 3D map can also be used for path 
planning and guidance inside a 3D building; this has also been 
demonstrated inside an office building and is implemented in 
our real time system. 

For good map coverage also for unmapped buildings, we 
are currently working on the abstraction of our laser SLAM 
results [6] to extract rooms and staircases from the pure line 
segments from the laser readings. 
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