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Abstract—Pedestrian Dead-Reckoning (PDR) and Radio Fre- relative positioning and a high sampling rate, the standard

quency (RF) ranging/positioning are complementary techrques
for position estimation but they usually locate different pints

in the body (RF in the head/hand and PDR in the foot). We
propose to fuse the information from both navigation pointsusing

a constraint filter with an upper bound in the distance betwea

the estimated positions of both sensors.

For a pedestrian with an IMU for PDR in the foot and a RF
positioning system in the head, the simplest bound is a maxiah
distance of 2 m between the positions of the sensors, this aklish
a spherical limit to the difference in the positions. It is ako
possible to use a smaller, non-symmetrical bound that estéibhes
an ellipsoid as the limit and improves the fusion. We propos¢he
use of a grid of particles to approximate the mean and covariace
of the states.

We have tested the algorithm by processing data from an Ultra
Wide Band (UWB) positioning sensor attached to an IMU, both
placed on the helmet of a person, and a foot-mounted IMU. Our
results show that the system is able to estimate the positioof
a person with a limited error growth for the dead reckoning
system and a better position estimate between position uptizs

deviation of the position error grows linearly with time and
therefore it should use additional information to bound the
error growth.

Another solution to the positioning problem relies on the
existence of a network of beacons placed in known positibns o
the building. Using the distances or angles to the beacbiss, i
possible to estimate the position of a person, these teghsiq
are called Local Positioning Systems (LPS). The angle or
distances to the known points can be obtained using cameras,
ultrasound or Radio Frequency (RF) systems [6]. The latter
are preferred due to their range of usage and popularization
in wireless communication, among those technologies wie wil
focus on Ultra Wide Band (UWB) systems [7] due to their
precision. Usually LPS systems are able to provide the ¢loba
positioning with a limited error, but they require a line ajfst
with the beacons and usually have a low sampling rate. In

many cases an IMU is used to increase the sampling rate of the
system and provides a measurement of the system dynamics
[8], diminishing the error of the system.

Both solutions are complementary, but in most cases they

|. INTRODUCTION can not be integrated directly in one sensor due to the fact

The field of indoor positioning has experienced great irthat PDR needs to place the IMU in the foot, and LPS systems
terest in the recent years due to the market of locativaquire the antennas to be placed in the upper part of the body
based services and the development of new technologies. Tdrea better line of sight. If the IMU and the RF antenna are
improvements in Micro Electro Mechanical (MEM) devicedoth placed in a laptop [9] the IMU does not have good zero
have allowed a person to use sensors previously too exgensilocity updates and might diverge quickly. If both sensors
or heavy to be carried by a pedestrian like an Inertial Memsumre in the foot [10] the antenna might have a bad line of
ment Unit (IMU). The inertial sensors assist in the estiorati sight and will generate a significant amount of outliers.€dth
of the position of other sensors, but due to the amount oenoiechniques use the IMU in the foot and the antenna in another
and bias presented in a MEM IMU, they can only propagagart of the body [11], [12], and increase the covariance of
the position for a few seconds because the standard deviative measurement to account for the unknown relative positio
of the position error grows with the cubic time [1]. between navigation points. Other authors [13], [14] use a

A common technique to reduce the error growth is thmodel of the lever arm but as the real relative position is
Pedestrian Dead-Reckoning (PDR, [2], [3], [4]), that pkcerot known, this might affect the dynamics of the navigation
an IMU in the foot and uses Zero velocity UPdaTes (ZUPToints.
during the stance phase to estimate and correct the errors oAs a way of fusing the information from two sensors,
the navigation states in an Extended Kalman filter (EKF). e will study the positions of the navigation points during
[5] the changes in the measured magnetic fields are usechtwmal walk and establish a limited distance constrainhin t
estimate the turn rate of the sensor and therefore limit tberg probability density function of the relative distance beém
of the orientation, but this technique requires a magnetemethe points as a way to relate the IMU on the foot and an
that is not always available. Although PDR produces a goaditenna in the head/chest. The limited distance consitamt

for the UWB system.
Index Terms—Pedestrian Dead-Reckoning, Ultra Wide Band,
nonlinear constraints, sensor fusion, zero-velocity detgion
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be expressed as a quadratic inequality [15], [16], [17] th&bm the minimization of a weighted distance between the con
bounds the probability distribution. In section Il we studgtrained values and the estimated meéan. The constrained
the constraint filter and propose the use of a particle filtestimate can be written as:

to calculate the propagation of the mean and covariance of ~ R R

the propagated states. In Section Ill we discuss the phatfor X =argming (X - XH)T - W.- (X - XT),  (3)
used and in Section IV the system is tested using an IMU with .

an UWB system in the head and an IMU in the foot for PDF8UCh that (1) is true.

Conclusions are presented in Section V. If the weighting factorlV. is the inverse of the estimated
covarianceW, = (P*)~!, the obtained projection coincide
Il. CONSTRAINT FILTER with the maximal probability estimate among the constrdine

The Kal filt h h 0 b lent values, but ifiW, = I, the identity matrix, the projection is
€ raiman TIers have shown 1o be an excellent way @lg ¢josest point to the estimated mean. In [18] the probem i

fusing information for state estimation, but many non I'meas X . T 9
= : " olved using a quadratic constratit- X )* - (L- X) < v* and
conditions can't be handled by it. Among those conditions w gaqg ( )" ( )<

. . . T %h iterative method. In [16] an approximation is proposed, t
encounter the mt_aqualllty c?on§tra|nts [171’ that I|m|ts LI€S  Hbtain the covariance of the constrained staes using the
of some probability distributions. The inequality consita

can be used to take advantage of the fact that if we have t\%roament of the projectioi,, as:

navigation points in the body they will have a limited distan pt— v, Pt vT. (4)

between them and we will show that it limits the growth of P

the error in the systems. This method uses the state with the maximal probability (not
Assuming we have two navigation pointsX' = the mean) as the estimate, andwgsis singular, the covariance

[(rH)T, (XHTT and X2 = [(r?)T,(X2)T]T, wherer(®) is s altered, therefore other methods must be studied.

the position andXo’) are the othemn; navigation states of

the i-th navigation point. Without a known relative positiorB. Probability Density Function Truncation

AX = X! — X?, the estimation generates two independentI 191 th g ) ¢ ined
problems and it does not allows a direct information fusion. " [19] the mean and covariance of a system consiraine

If both sensors are on the body of a person, it is possible'fb %ni_l¢mden3|pn f'S Opta'”egf US'EQ the r:rlijnpatlor; ?Ethhe
assume that there is a limited distance between the poidts opa ||ty_ en§|ty ulnctlon (pdf). les_ method Is only
it might help to reduce the system error covariance. In [1 [I?r constraints in only one state and in our case we want to

[16], [L7] the effect of establishing a bound in the jointteta uncate the pdf simultaneously in more than one, therefore
X = [(XHT,(X2)T]T (n = my + ms + 6 states) is treated we propose to study the pdf truncation to calculate the mean

and covariance of the constrained states.

If we asume the estimated pdf(X) to be Gaussian
(X ~ N(X+,P")), the pdf of the constrained state
ChoosingL for L - X = r! — 72 = Ar, is a way to limit p(X.) = p(X|C) (in our caseC equal to|L - X| < )
the maximal distance between navigation points to a spHeredll be:

as the inequality:
I1L- X[ <. (Y

radius+, but other shapes can be implemented as the ellipsoid: X)) = p(C)X) - p(X)
(rl —12)/dy ‘ [ p(C|X) - p(X)dz’
L-X=| (ry=rpfds |, @ 2 it |- X <,
(rl —r2)/ds = Yo ¢ (%)
else

wherer~§j) is the component in the axis= {z,y, z} of the

navigation pointj, andd; is the limit of the ellipsoid in the

axisi. _ a:/p(C|X)~p(X)da::/ p(X)dz (6)
Obtaining a new mean and covariance of the states can be X

treated in several ways, in [17] several methods are predent

for treating the condition in (1), among them we will treaf"d

the projection and the truncation of the probability densit X;={XeR": L -X|| <~} 7

function. After the proposed method we will introduce an .

approximation method for calculating the mean and covagan The meanX. and covariance’. can be calculated as:

of the states.

whereq is:

*
c

Xc == XC p(Xc>dxc (8)
A. Projection methods X
In [17] the problem is treated as an “Estimate projectiom” fo P = / (Xe— XC) (X, — X’C)T ‘p(Xe)dz. (9)
Gaussian distributions, where the new me®an is obtained :
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C. Integral calculation eg. 2) and
For a pdf truncation approach, we propose to use a grid Xo.1 p
of particles to estimate the 3 integrals (6, 8 and 9). We (o1 + 722)/dy
first generate a set a¥V points uniformly distributed around Zy= | (ry+ rfﬂ)/gQ . 17)
the constrained areaX{ € X*) with an integration interval (721 }”2)/ 3
0,2

dx. =~ AX; and assuming a Gaussian distribution, calculate
its corresponding probabilitieg X;), then we can estimat® This transformation passes the ellipsoidal constraint io a
as: spherical constraint problem if.
In [20], is assumed that iX is GaussianZ will also have
*= ZP(XZ')AXZ" 10) 4 Ga[usgian distribution with an estimated mean= 7 - X
and covarianceP, = T - PT - TT. Separating the inverse of
If we definep’(X;) = p(X;)/a, then (8) and (9) can be the Covariance’, according to the corresponding partsf

approximated as the sums: and Zs:
o Pr—w— | e ] (18)
Xe=> X p/(Xi)AX, (11) 2 e
i=1 it Wi, =Wy — WiaWy'Wh, we can defing, (Z,) as:
and
N pl(Zl) _ N |W1131|e—(A21TW1/1A21)/2 (19)
P.=Y (X - Xo)(Xi — Xo)TP/(X)AX, +R., (12) vam
i=1 whereAZ, = Z, — Zy, and Z; is the estimated mean ¢, .
where R, is a quantization noise added due to the grids. We will define a normalization factor. as:
The previous equations can be simplified calculating the
value a, = / p1(Z1)dZy (20)
N z7
o =" p(X). (13)  where
=t 7y ={Z1 e R 1 || Z1|| < v} (21)
where o = o/ AX; and definingp*(X;) = p/(X;)AX, = ] ) ,
p(X;)/’, then (11) and (12) can be rewritten as: The normalized pdf will bey}(Z1) = p1(Z1)/c around
Z71. The estimated mean of the constrained distribution can be
. N divided asZ. = [21, ZL]" and calculating each part [20]:
Xe=> Xi-p"(Xi) (14)
=1 Za = / Z\py(Z1)dZy, (22)
and zZ;
N and:
P.o=> (X; — X)(X; — X)Tp*(X; Re, 15 8 8 _ 8 S
c ;( C)( ) p ( ) + c ( ) Zc2 — 22 o W221W1’1; . (ch . Zl), ) (23)
D. Sate transformation The covariance of the constrained distribution can be sepa-

) ) rated in each component according4g and 7, as:
In a pdf truncation approach, the use of grids to calculate

those 3 integrals (6, 8 and 9) will require a significant amoun po_ Pa1 Peo o4

. . zc — T ( )

of points, therefore we intend to use a reduced state study Py Peoo

as propose in [20]. For spherical constraints, the states Chere [20]:

be rewritten with a linear transformatiai = [Z1, Z1|T = '

T. X € ®", such thatZ; = [7“177“2] andZ; = [ngl,(T'1+ P11:/
Z

7 7 T,/
r2)7, XT,]T, where: (Z1 — Za)(Z1 — Zea)" p1(Z1)d Z;. (25)

*
1

13 03><m1 _I3 03><m2 Pclg = — 011W12W2_21. (26)
Om x3 Im Om X3 Om Xm
T — 1 1 1 1 2 16
.[3 03><m1 Id 03><m2 ( ) and
0777,2><3 0m2><m1 0m2><3 Img Pc22 = W2_21 + W2_21W17;P511 W12W2_21 (27)
and the constraint is reduced {d. - T - Z|| = || Z1]| < 7. OnceZ. and P,.. are obtained, the linear transformatién

For ellipsoidal constraints it is useful to ug& = L- X (from can be used to obtaik, = T-1Z, andP. = T1P,.(T~1HT
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[1l. EVALUATION PLATFORM both placed in the top of a helmet. We propose an Inertial

For the evaluation of this method we propose to fuse tWycvigation System (INS) for this navigation point, tradim

navigation information sources, the first is a commercia&e instantt, the Orientation as the Direction Cosine Matrix

n(h)
available UWB system and the second is a foot-mounted INg.x  (Changes measures from the sensor frame, Smed}?X
implementation. This section will discuss the used systenas th€ navigation frame, subindey), the orientation erron\ Uy

the considerations of the relative positioning among them. N the navigation system, the positiefy and the velocity:}:.
An INS in a generic point in the body, is described by the

A. UWB System following equations (for the specific case of the IMU with the

The UWB system considered in this paper is a commérPisense tag we will use= h, and for the IMU in the foot
cial Real-Time Location System (RTLS), manufactured bY€ Will usei = f):

)

Ubisense [21]. It is comprised of an infrastructure segtion n(i)  _ An@) P x]at®

ot : : : : Copw = Cppy et (28)
consisting of eight wired synchronized sensors mounted in ’(i) (Z) an(®) (i) 4
fixed surveyed positions, and of a user section consisting of iy o= ol (G EY = g) Al (29)
sever:_:ll active wireless tags. The sensors are able to neeasur Tz(f) — r,(fll + (7;](:) + 7;](21)&(1')/2 (30)
the Time-Difference-Of-Arrival (TDOA) and the angle-of-

arrival (AOA) of the UWB pulses transmitted by the tagswhere[w!” x] is the skew symmetrical matrix for the turn
therefore providing a centralized estimate of the tagstipnsi rate, measured aSyr(? in the gyroscopeAt(® is the time
with an update rate of up to 10 Hz. The system is severdhterval (the sampling frequency of the Microstrain IMU is
affected by non line of sight conditions, but we studied theso Hz) andil" is the acceleration in the sensor, measured
problem in the central area of the system where most of the A.-() in the accelerometer. For the state vecKyf) —
sensors were in line of sight. , auir,(j))T, (#T (AW)TIT the propagation of the estimated
The RTLS system infrastructure has been installed and ¢ Al ariancep® is:
brated in the R1 experimental space at KTH, a120 x 10 m ko=
underground old reactor hall This experimental space pro- p}gi) - F/ii) . plg'i_)l . (F;“)T +QW), (31)
vides opportunity to run full scale experiments in three elim _
sions, since one side of the hall consists of three storieswfiereQ(?) is the process noise arfqg” is the state transition
office modules. Furthermore, due to its underground lonatiomatrix,
it provides a fully controllable RF environment. I Is- At 0
The UWB system is intended to be used as a reference toal,i) n(i . i
for the evaluation of the performance of research protcﬁype%’“ =% Is [70’)7;)‘400(1) <AL (32)
for pedestrian indoor navigation devices such as otheoradi 03 O3 Iy
based systems, foot-mounted inertial navigation and Nisio \yhen an additional measurememtg) is presented (the
based solutions. Also, it enables scenario-based testing|fisense tag can provide position updates at 10 Hz), thesstat
navigation devices for user-specific applications, sucfirsts (i) can be updated from the previous estimﬁtg) and the

responder users. Finally, it provides a way to experim@ta}n’éasured valuen( = Pos" for the UWB/IMU system) as:
validate the accuracy requirements of such specific applica k

tions. x = XY KmP —HD . XDy (33)
The results of a measurement campaign, carried out using a @@ I RONTION0)
robotic laser total station as a ground truth referencegehav hoo= U= K7 HOBS (34)
shown that the raw unfiltered measurements of the UW(Bhere H" is the observation matrixK}* = [Is,0s, 0s] for
system provide an accuracy of 30 cm or better in large pastioghe Ubisense system) and the Kalman gﬁ‘iﬁ) is:
of the considered experimental space. Such an accuracy is | » ) o 4
acceptable for the intended purpose, even though the indoork’ = P\ . (H)T . (K" . B . HF + R)~1  (35)
radio propagation environment is particularly challemgidue
to dense multipath conditions. Furthermore, from the measu
ment results, a coverage and accuracy map of the instalne]
UWB system in the considered area has been generated, which C;L,f) — olaT® x] é;bgj), (36)
is a useful reference for the performance assessment of othe ) o ) '
positioning systems. An extensive description and digonss @nd the orientation error is reset.
of the measurement campaign can be found in [22]. B. Foot-Mounted INS
A Microstrain 3DM-GX3-35 IMU with a sampling rate

; The PDR system used in this paper is an open source
of 250 Hz, was attached to the UWB wireless tag, anéjmbedded foot-mounted INS implementation, including both

IMore information about the KTH R1 experimental space maydued at hardwar? and SOﬁ_\Nare design caIIe(_j OpenShoe [23]. The
www.rl.kth.se system is based in an Analog Devices ADIS16367 IMU

and R is the measurement covariance. After each measure-
gnt update the orientation is corrected as:
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(Accelerometer and Gyroscope but no Magnetometer) and raatrix is:

Atmel AVR32UC3C microcontroller, capable of transmitting [ R 00 ]
the raw data from the IMU or a preprocessed Position, Valocit ko9 Foot IMU sample
and Orientation. The IMU is placed in the heel of a boot for | 0o Io |
an easily detected stance and a more realistic zero velocity i i
phase. F, = Io 0o Head IMU sample . (37)
The foot-mounted INS or PDR is based in the use of an | 09 Rl i
INS with the signals from an IMU in the foot of the person.
Due to the nature of the inertial navigation using consumer ) F,f 0o
grade IMUs, the standard deviation of the position erromgro 0. Fh Both IMUs samples
proportional to the cubic time and after just a few seconds th L0 k
estimation is usually several meters wrong. Similarly the process nois@ will be
For a pedestrian with an IMU in the foot, it is possible to [ QF 0 |
identify the stance phases of the walking pattern and fdree t 0o 0o Foot IMU sample
velocity to be zero, and therefore limit the growth of the po- - -
sition error covariance. In [1] and [3] several stance déeiac - .
methods and the effect on the navigation are discussedgUsin _ Og O Head IMU sample . (38)
an EKF it is possible to track the errors of the navigation 0y Q"
and eliminate them, the resulting increment of the standard ) )
deviation of the position error is approximately linear hwit r oF 0
the traveled distance. 0 Q(il Both IMUs samples
9

One of the main sources of error in an inertial navigation - ] o
is the heading error, some authors like [2], [5] use the If a stance or a Ubisense positioning is detected, the states

magnetic field to obtain information on the attitude, buttie t Wil be. updated with (33)-(36), where the measurement
OpenShoe, there is no magnetometer available and it becomydsbe:

an unobservable state. The PDR estimation provides good [O,O,O]T ZUPT,

relative_ positiqni_r?glwitr_\out the use o.f externa! .hardwdmezt my, = { [Pos!] Ubisense positian . (39)
it requires an initialization and occasional position updao

limit the error grow [0,0,0, (PosZ)T]T Both measurements

N : . The observation matri¥{;, will be:
The proposed navigation solution for the foot (indgx b
is based on the tracking of the estimated orientation of the { H,f O3x9 } ZUPT,
foot sensorcgfgcf ) and the estimated states, the error of the

orientation AW/ in the navigation frame, the positior{ and { 0o A } Ubisense positian
3x9 k

the velocity 7‘,’:. The system evolves according to (28)-(36) Hj = (40)
wherei = f (the sampling frequency of the OpenShoe is
825 Hz). If a stance is detected a ZUPT measurement is H,f 039
implemented, where the velocity is zero{ = [0,0,0]7) Ogo  HP Both measurements
and the observation matrix iH,{ = [03, I3, 03]. ) .
The measurement covarian&ewill be:
[R/] ZUPT,
R" Ubisense positian
ro POSINON 41y
R 05

0 Rh] Both measurements
3

Both systems are related only by the fact that there is a

Due to the fact that the two IMUs have different sampling'e.lX'mal distance between them and without this information

rates, the measurements from the head and foot are n%ltomt navigation system 'S. equivalent to_havmg bo_th INS
Independently, but by applying the constraint, the naidgat

simultaneous. We propose an asynchronous implementatlogmts will have a crosscorrelation and it will decrease the
where the joint state vector i, = [(X])7, (X})7]. Each P

. / : rror growth rate. For the constraint we define the mafrix
system is propagated when a new IMU sample is available @‘r an ellipsoidal bound:

only one system receives an IMU sample the other remains
the same), according to (28)-(32) where the state transitio L=[1I; Osx6 —Ia O3xs |, (42)

C. Joint Navigation System
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where We propose the use of an ellipsoidal constraint with=
1/dy 0 0 0.6 mdy = 0.6 m, ds = 0.3 m andvy = 1, between the head
I; = 0 1/d2 O (43) and the foot displaced to the head height as a way to limit
0 0 1/ds the relative position between the foot and the head, leaving

) ] a margin for the positioning error. The foot position can be
As a way to evaluate the maximal distance between t3gtained subtracting the person heightrfa This proposed

navigation points, we recorded the position of the head afghit yses a tighter bound that accelerates the effect of the
feet with a camera motion capture system during a straighyer.

walk in a treadmill and a random walk in a limited area. In

figure 1 it is possible to observe that the relative positiares D. UWB PDR simulation

mainly distributed around an ellipsoid centered in the poin As a way to test the behavior of the constraint and compare
[0,0,1.65]" m and with a variation of around 0.2 m in the Zt with other approaches we propose a Monte Carlo simulation
axis and 0.5 m in the XY plane. based on the noiseless synthetic foot positiorig’}, the
corresponding IMU signals from [1] and a generated head
position @,(Ch)) and corresponding accelerations and turn rates
for a pedestrian.

The signals were based in the closed loop data set proposed
for the foot of a person walking 10 counterclockwise closed
loops. The head is positioned at a constant height of 1.8 m
and moves at an approximately constant speed, 0.1 m on the
left of the path of the foot, IMU signals were obtained from
the analytical representation of that position

Both points will have a maximal distance of less than 2 m,
but as observed in the relative distance distribution ofréigl
the bound can be shortened to 0.6 m in the XY plane and 0.3 m
in the Z axis.

The filters track the position, velocity and orientationoerr
in both points using the IMU signals from the head and
06 e s Random walk loft foot the foot (both sampled at 100 Hz and with noise recorded
' Random walk, right foot from a standing still IMU) and the position obtained from a

*  Straight walk, left foot simulated UWB system that provides a position measurement

*  Straight walk, right foot with Gaussian noisePosZ ~ N (r,(ch),RUWB) at 5 Hz. The
TITT o comsrat foot positioning is obtained using ZUPT.

The evaluated algorithms will be a reconstruction without
the constraint (the upper bound), a constrained system with
bounds as previously proposed and a constrained system with
a bigger boundd; =1 mds =1 m, d3 = 0.5 m andy = 1).

We will observe the obtained positioning for a single casg an
perform a Monte Carlo simulation, executing the algorithms
100 times and adding noise to each IMU and UWB Position
signal Ruws = I3 - 1 m? error). The estimated positions
(f,if) andf,(f)) will be evaluated using the Root Mean Squared
Errors (RMSE) of the positions.

In figure 2 the trajectory of both systems is observed
without a bound in the distance, the foot position as a iakrti
navigation algorithm starts to accumulate heading ertoas t
affects the positioning, while the head position presents a
: ' limited amount of error. In figure 3, by using the distance

0 01 02 03 04 05 06 ) . 4 ;
Radius (m) bound, both trajectories go side by side around the closed
trajectory, with small fluctuations due to the measurements
The foot position keep a correct orientation and the head
position appears to have less error than the unconstrained
Fig. 1. Relative position of the head with respect to thedaetorded with a approgch. . .
camera motion capture system a. Distribution in the XY plan®istribution In figure 4 the evolution of the RMSE is observed for
in the radius vs. height plane the studied methods. The unconstrained method generates th

a. Distribution of the relative positions in the XY plane
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02F

0.

Y axis (m)

S0 2f i S
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20 — . * UWB measurements

Head (UWB/IMU)

: : Foot (Openshoe/PDR) : : :

35f:----oo| = = = Real trajectory G 3k
: : x  Starting point : :

e UWB measurements
Head (UWB/IMU) ]
Foot (Openshoe/PDR)

: | = = —Real trajectory
30b--.-.:..| * Starting point
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25f
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5} 5h
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Fig. 2. Reconstruction of the position of the foot and thechedthout a Fig. 3.  Reconstruction of the position of the foot and thechedth a
constraint constraint of 1 m in the XY plane and 0.5 m in the Z axis

upper bound for error growth, significantly higher due to theff-line, to a common time frame matching the motion of the
loss of the heading in the foot position estimation. In theecafoot perceived from the UWB and with the PDR.
of the UWB/INS method, it reduces the error compared to For the experiment the test subject walked 10 counterclock-
the UWB alone measurements, thanks to the introduction wise loops in an octogonal shape pattern of approximately
the IMU. The constrained approach has an even lower erfbp m by 9 m around the central area of the R1 experimental
growth, due mainly to the correction of the orientation igpace at KTH. Figure 6 shows the independent position recon-
PDR. The use of tighter bounds accelerate the convergestigiction of the UWB and the PDR system, a constant noisy
and diminish the error for the head (UWB/INS) estimation an@ositioning can be observed in the first and the accumulation
remains approximately the same for the foot (PDR) estimatioof error produced by the heading in the second, due to the
but if the bound is too low, the occasional points outside ddck of an initial yaw value for the foot navigation point.
the bound might affect the measurements and generate abrugtigure 7 shows the position reconstruction using the con-
higher errors. straint in the distance between the UWB/IMU in the head
and the PDR system in the foot. Due to the unknown initial
heading, the movement starts with a wrong path, but it start
For the evaluation of the system we recorded the IMUs awdrrecting the yaw and after some steps converges with the
Ubisense positioning for a person walking counterclockwigorrect path.
in the R1 experimental space of KTH with a Laptop as can beThe constraint filter allows a correct adjustment in sitrdi
observed in figure 5. An additional UWB tag was placed in thg@ere two navigation points are presented, one with a bounded
foot for an easier synchronization of the UWB and IMUs dat&rror and another with a incrementing error, but with a good
the position updates from this point were not used becausesdiative positioning. The cost of the constraint filter i th
presented a significant amount of outliers due to a poor lieemputation time required to estimate the mean and cowaian
of sight. of the bounded pdf, but with a 100 Hz IMU signal, it can
The signals of the IMU in the foot (OpenShoe) werealculate the position in real time. Due to the non Gaussian
recorded at 825 Hz, the IMU in the head had a sampling ratePdsition error, the constraint filter has a slightly wordeef
250 Hz and the update rate of the UWB tag in the head wadHan in the simulations, however it is able to correct wrong
Hz. Both IMUs shared the laptop’s CPU time frame, the UWBrientations and diminish the errors in each system.
tags in the head and in the foot shared the same UWB systenWe have observed that if the standard deviation of the
time frame. All the measurements were manually convertgquhsition measurement updates is higher than the bounded

IV. EXPERIMENTAL EVALUATION
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Evolution of the Root mean squared error
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head with UWB position measurements and an IMU in the foohwiUPT
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V. CONCLUSIONS

We have presented a method for improving the estimation
of two navigation points with the information that there is
a maximal distance between them. The method is based on a
constraint filter, which truncates the pdf of the relativsiion
P according to the established bound and estimates a new mean
and covariance for the joint system.
The use of the constraint filter bounds the positioning
error of a PDR estimation with respect to another positignin
(Openshoel system, in our case UWB. In the lack of position updates,
the filter lower the error growth of the UWB/INS system
(approximately quadratic with time) to that of a PDR (linear
with the traveled distance).
The constraint filter using a pdf truncation offers a way of
Fig. 5. Equip used during the evaluation of the system propagating the statistics of the navigation states, kyires
many calculations for the approximations of the truncated p
mean and covariances. The state transformation used offers
a faster method for their calculation and permits the use of
region, the single navigation point with position updates ha denser grid. Future work should include ways to reduce
the same performance than the constraint filter and due to the calculation time of this approximations, better modets
computation time, it is preferable. the truncated pdf, taking into account the non-line-ofsig
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conditions and the comparison of the effect of this fusiothwi sl

several LPS systems or PDR systems.
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