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Abstract—Pedestrian Dead-Reckoning (PDR) and Radio Fre-
quency (RF) ranging/positioning are complementary techniques
for position estimation but they usually locate different points
in the body (RF in the head/hand and PDR in the foot). We
propose to fuse the information from both navigation pointsusing
a constraint filter with an upper bound in the distance between
the estimated positions of both sensors.

For a pedestrian with an IMU for PDR in the foot and a RF
positioning system in the head, the simplest bound is a maximal
distance of 2 m between the positions of the sensors, this establish
a spherical limit to the difference in the positions. It is also
possible to use a smaller, non-symmetrical bound that establishes
an ellipsoid as the limit and improves the fusion. We proposethe
use of a grid of particles to approximate the mean and covariance
of the states.

We have tested the algorithm by processing data from an Ultra
Wide Band (UWB) positioning sensor attached to an IMU, both
placed on the helmet of a person, and a foot-mounted IMU. Our
results show that the system is able to estimate the positionof
a person with a limited error growth for the dead reckoning
system and a better position estimate between position updates
for the UWB system.

Index Terms—Pedestrian Dead-Reckoning, Ultra Wide Band,
nonlinear constraints, sensor fusion, zero-velocity detection

I. I NTRODUCTION

The field of indoor positioning has experienced great in-
terest in the recent years due to the market of location
based services and the development of new technologies. The
improvements in Micro Electro Mechanical (MEM) devices
have allowed a person to use sensors previously too expensive
or heavy to be carried by a pedestrian like an Inertial Measure-
ment Unit (IMU). The inertial sensors assist in the estimation
of the position of other sensors, but due to the amount of noise
and bias presented in a MEM IMU, they can only propagate
the position for a few seconds because the standard deviation
of the position error grows with the cubic time [1].

A common technique to reduce the error growth is the
Pedestrian Dead-Reckoning (PDR, [2], [3], [4]), that places
an IMU in the foot and uses Zero velocity UPdaTes (ZUPT)
during the stance phase to estimate and correct the errors of
the navigation states in an Extended Kalman filter (EKF). In
[5] the changes in the measured magnetic fields are used to
estimate the turn rate of the sensor and therefore limit the grow
of the orientation, but this technique requires a magnetometer
that is not always available. Although PDR produces a good

relative positioning and a high sampling rate, the standard
deviation of the position error grows linearly with time and
therefore it should use additional information to bound the
error growth.

Another solution to the positioning problem relies on the
existence of a network of beacons placed in known positions of
the building. Using the distances or angles to the beacons, it is
possible to estimate the position of a person, these techniques
are called Local Positioning Systems (LPS). The angle or
distances to the known points can be obtained using cameras,
ultrasound or Radio Frequency (RF) systems [6]. The latter
are preferred due to their range of usage and popularization
in wireless communication, among those technologies we will
focus on Ultra Wide Band (UWB) systems [7] due to their
precision. Usually LPS systems are able to provide the global
positioning with a limited error, but they require a line of sight
with the beacons and usually have a low sampling rate. In
many cases an IMU is used to increase the sampling rate of the
system and provides a measurement of the system dynamics
[8], diminishing the error of the system.

Both solutions are complementary, but in most cases they
can not be integrated directly in one sensor due to the fact
that PDR needs to place the IMU in the foot, and LPS systems
require the antennas to be placed in the upper part of the body
for a better line of sight. If the IMU and the RF antenna are
both placed in a laptop [9] the IMU does not have good zero
velocity updates and might diverge quickly. If both sensors
are in the foot [10] the antenna might have a bad line of
sight and will generate a significant amount of outliers. Other
techniques use the IMU in the foot and the antenna in another
part of the body [11], [12], and increase the covariance of
the measurement to account for the unknown relative position
between navigation points. Other authors [13], [14] use a
model of the lever arm but as the real relative position is
not known, this might affect the dynamics of the navigation
points.

As a way of fusing the information from two sensors,
we will study the positions of the navigation points during
normal walk and establish a limited distance constraint in the
probability density function of the relative distance between
the points as a way to relate the IMU on the foot and an
antenna in the head/chest. The limited distance constraintcan
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be expressed as a quadratic inequality [15], [16], [17] that
bounds the probability distribution. In section II we study
the constraint filter and propose the use of a particle filter
to calculate the propagation of the mean and covariance of
the propagated states. In Section III we discuss the platform
used and in Section IV the system is tested using an IMU with
an UWB system in the head and an IMU in the foot for PDR.
Conclusions are presented in Section V.

II. CONSTRAINT FILTER

The Kalman filters have shown to be an excellent way of
fusing information for state estimation, but many non linear
conditions can’t be handled by it. Among those conditions we
encounter the inequality constraints [17], that limits thevalues
of some probability distributions. The inequality constraints
can be used to take advantage of the fact that if we have two
navigation points in the body they will have a limited distance
between them and we will show that it limits the growth of
the error in the systems.

Assuming we have two navigation points,X1 =
[(r1)T , (X1

o )
T ]T and X2 = [(r2)T , (X2

o )
T ]T , where r(i) is

the position andX(i)
o are the othermi navigation states of

the i-th navigation point. Without a known relative position
∆X = X1 − X2, the estimation generates two independent
problems and it does not allows a direct information fusion.
If both sensors are on the body of a person, it is possible to
assume that there is a limited distance between the points and
it might help to reduce the system error covariance. In [15],
[16], [17] the effect of establishing a bound in the joint states
X = [(X1)T , (X2)T ]T (n = m1 + m2 + 6 states) is treated
as the inequality:

‖L ·X‖ ≤ γ. (1)

ChoosingL for L · X = r1 − r2 = ∆r, is a way to limit
the maximal distance between navigation points to a sphere of
radiusγ, but other shapes can be implemented as the ellipsoid:

L ·X =





(r1x − r2x)/d1
(r1y − r2y)/d2
(r1z − r2z)/d3



 , (2)

wherer(j)i is the component in the axisi = {x, y, z} of the
navigation pointj, anddi is the limit of the ellipsoid in the
axis i.

Obtaining a new mean and covariance of the states can be
treated in several ways, in [17] several methods are presented
for treating the condition in (1), among them we will treat
the projection and the truncation of the probability density
function. After the proposed method we will introduce an
approximation method for calculating the mean and covariance
of the states.

A. Projection methods

In [17] the problem is treated as an “Estimate projection” for
Gaussian distributions, where the new meanX̃+ is obtained

from the minimization of a weighted distance between the con-
strained values and the estimated meanX̂+. The constrained
estimate can be written as:

X̃+ = argminX(X − X̂+)T ·Wc · (X − X̂+), (3)

such that (1) is true.
If the weighting factorWc is the inverse of the estimated

covarianceWc = (P+)−1, the obtained projection coincide
with the maximal probability estimate among the constrained
values, but ifWc = I, the identity matrix, the projection is
the closest point to the estimated mean. In [18] the problem is
solved using a quadratic constraint(L ·X)T ·(L ·X) ≤ γ2 and
an iterative method. In [16] an approximation is proposed, to
obtain the covariance of the constrained statesP̃+ using the
gradient of the projection∇p, as:

P̃+ = ∇p · P+ · ∇T
p . (4)

This method uses the state with the maximal probability (not
the mean) as the estimate, and as∇p is singular, the covariance
is altered, therefore other methods must be studied.

B. Probability Density Function Truncation

In [19] the mean and covariance of a system constrained
in one dimension is obtained using the truncation of the
probability density function (pdf). This method is only valid
for constraints in only one state and in our case we want to
truncate the pdf simultaneously in more than one, therefore
we propose to study the pdf truncation to calculate the mean
and covariance of the constrained states.

If we asume the estimated pdfp(X) to be Gaussian
(X ∼ N (X̂+, P+)), the pdf of the constrained state
p(Xc) = p(X |C) (in our caseC equal to ‖L · X‖ ≤ γ)
will be:

p(Xc) =
p(C|X) · p(X)

∫

p(C|X) · p(X)dx
,

=

{

p(X)
α if ‖L ·X‖ ≤ γ,

0 else
(5)

whereα is:

α =

∫

p(C|X) · p(X)dx =

∫

X∗

c

p(X)dx (6)

and

X∗
c = {X ∈ ℜn : ‖L ·X‖ ≤ γ} (7)

The meanX̂c and covariancePc can be calculated as:

X̂c =

∫

X∗

c

Xc · p(Xc)dxc (8)

Pc =

∫

X∗

c

(Xc − X̂c) · (Xc − X̂c)
T · p(Xc)dxc (9)
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C. Integral calculation

For a pdf truncation approach, we propose to use a grid
of particles to estimate the 3 integrals (6, 8 and 9). We
first generate a set ofN points uniformly distributed around
the constrained area (Xi ∈ X∗

c ) with an integration interval
dxc ≈ ∆Xi and assuming a Gaussian distribution, calculate
its corresponding probabilitiesp(Xi), then we can estimateα
as:

α =

N
∑

i=1

p(Xi)∆Xi. (10)

If we definep′(Xi) = p(Xi)/α, then (8) and (9) can be
approximated as the sums:

X̂c =

N
∑

i=1

Xi · p′(Xi)∆Xi (11)

and

Pc =

N
∑

i=1

(Xi − X̂c)(Xi − X̂c)
T p′(Xi)∆Xi +Rc, (12)

whereRc is a quantization noise added due to the grids.
The previous equations can be simplified calculating the

value

α′ =

N
∑

i=1

p(Xi). (13)

whereα = α′∆Xi and definingp∗(Xi) = p′(Xi)∆Xi =
p(Xi)/α

′, then (11) and (12) can be rewritten as:

X̂c =

N
∑

i=1

Xi · p∗(Xi) (14)

and

Pc =

N
∑

i=1

(Xi − X̂c)(Xi − X̂c)
T p∗(Xi) +Rc, (15)

D. State transformation

In a pdf truncation approach, the use of grids to calculate
those 3 integrals (6, 8 and 9) will require a significant amount
of points, therefore we intend to use a reduced state study
as propose in [20]. For spherical constraints, the states can
be rewritten with a linear transformationZ = [ZT

1 , Z
T
2 ]

T =
T · X ∈ ℜn, such thatZ1 = [r1 − r2] andZ2 = [XT

o,1, (r1 +
r2)

T , XT
o,2]

T , where:

T =









I3 03×m1 −I3 03×m2

0m1×3 Im1 0m1×3 0m1×m2

I3 03×m1 I3 03×m2

0m2×3 0m2×m1 0m2×3 Im2









(16)

and the constraint is reduced to‖L · T−1 · Z‖ = ‖Z1‖ ≤ γ.
For ellipsoidal constraints it is useful to useZ1 = L · X (from

eq. 2) and

Z2 =













Xo,1

(rx1 + rx2)/d1
(ry1 + ry2)/d2
(rz1 + rz2)/d3

Xo,2













. (17)

This transformation passes the ellipsoidal constraint to an
spherical constraint problem inZ.

In [20], is assumed that ifX is Gaussian,Z will also have
a Gaussian distribution with an estimated meanẐ = T · X̂
and covariancePz = T · P+ · T T . Separating the inverse of
the CovariancePz according to the corresponding parts ofZ1

andZ2:

P−1
z = W =

[

W11 W12

WT
12 W22

]

, (18)

if W ′
11 = W11 −W12W

−1
22 WT

12, we can definep1(Z1) as:

p1(Z1) =

√

|W ′
11|√

2π
3 e−(∆ZT

1 W ′

11∆Z1)/2 (19)

where∆Z1 = Z1 − Ẑ1, andẐ1 is the estimated mean ofZ1.
We will define a normalization factorαz as:

αz =

∫

Z∗

1

p1(Z1)dZ1 (20)

where
Z∗
1 = {Z1 ∈ ℜ3 : ‖Z1‖ ≤ γ}. (21)

The normalized pdf will bep′1(Z1) = p1(Z1)/αz around
Z∗
1 . The estimated mean of the constrained distribution can be

divided asẐc = [ẐT
c1, Ẑ

T
c2]

T and calculating each part [20]:

Ẑc1 =

∫

Z∗

1

Z1p
′
1(Z1)dZ1, (22)

and:

Ẑc2 = Ẑ2 −W−1
22 WT

12 · (Ẑc1 − Ẑ1), . (23)

The covariance of the constrained distribution can be sepa-
rated in each component according toZ1 andZ2 as:

Pzc =

[

Pc11 Pc12

PT
c12 Pc22

]

(24)

where [20]:

Pc11 =

∫

Z∗

1

(Z1 − Ẑc1)(Z1 − Ẑc1)
T p′1(Z1)dZ1. (25)

Pc12 = −Pc11W12W
−1
22 . (26)

and
Pc22 = W−1

22 +W−1
22 WT

12Pc11W12W
−1
22 (27)

OnceZ̄c andPzc are obtained, the linear transformationT
can be used to obtain̂Xc = T−1Ẑc andPc = T−1Pzc(T

−1)T
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III. E VALUATION PLATFORM

For the evaluation of this method we propose to fuse two
navigation information sources, the first is a commercially
available UWB system and the second is a foot-mounted INS
implementation. This section will discuss the used systemsand
the considerations of the relative positioning among them.

A. UWB System

The UWB system considered in this paper is a commer-
cial Real-Time Location System (RTLS), manufactured by
Ubisense [21]. It is comprised of an infrastructure section,
consisting of eight wired synchronized sensors mounted in
fixed surveyed positions, and of a user section consisting of
several active wireless tags. The sensors are able to measure
the Time-Difference-Of-Arrival (TDOA) and the angle-of-
arrival (AOA) of the UWB pulses transmitted by the tags,
therefore providing a centralized estimate of the tags positions
with an update rate of up to 10 Hz. The system is severely
affected by non line of sight conditions, but we studied the
problem in the central area of the system where most of the
sensors were in line of sight.

The RTLS system infrastructure has been installed and cali-
brated in the R1 experimental space at KTH, a 12× 30× 10 m
underground old reactor hall1. This experimental space pro-
vides opportunity to run full scale experiments in three dimen-
sions, since one side of the hall consists of three stories of
office modules. Furthermore, due to its underground location,
it provides a fully controllable RF environment.

The UWB system is intended to be used as a reference tool
for the evaluation of the performance of research prototypes
for pedestrian indoor navigation devices such as other radio-
based systems, foot-mounted inertial navigation and vision-
based solutions. Also, it enables scenario-based testing of
navigation devices for user-specific applications, such asfirst-
responder users. Finally, it provides a way to experimentally
validate the accuracy requirements of such specific applica-
tions.

The results of a measurement campaign, carried out using a
robotic laser total station as a ground truth reference, have
shown that the raw unfiltered measurements of the UWB
system provide an accuracy of 30 cm or better in large portions
of the considered experimental space. Such an accuracy is
acceptable for the intended purpose, even though the indoor
radio propagation environment is particularly challenging, due
to dense multipath conditions. Furthermore, from the measure-
ment results, a coverage and accuracy map of the installed
UWB system in the considered area has been generated, which
is a useful reference for the performance assessment of other
positioning systems. An extensive description and discussion
of the measurement campaign can be found in [22].

A Microstrain 3DM-GX3-35 IMU with a sampling rate
of 250 Hz, was attached to the UWB wireless tag, and

1More information about the KTH R1 experimental space may be found at
www.r1.kth.se

both placed in the top of a helmet. We propose an Inertial
Navigation System (INS) for this navigation point, tracking in
the instantk, the Orientation as the Direction Cosine Matrix
C

n(h)
b,k (changes measures from the sensor frame, subindexb, to

the navigation frame, subindexn), the orientation error∆Ψh
k

in the navigation system, the positionrhk and the velocityṙhk .
An INS in a generic pointi in the body, is described by the
following equations (for the specific case of the IMU with the
Ubisense tag we will usei = h, and for the IMU in the foot
we will use i = f ):

C
n(i)
b,k = C

n(i)
b,k−1 · e[ω

(i)
k

×]∆t(i) (28)

ṙ
(i)
k = ṙ

(i)
k−1 + (Ĉ

n(i)
b,k · r̈(i)k − g)∆t(i) (29)

r
(i)
k = r

(i)
k−1 + (ṙ

(i)
k + ṙ

(i)
k−1)∆t(i)/2 (30)

where[ω(i)
k ×] is the skew symmetrical matrix for the turn

rate, measured asGyr(i) in the gyroscope,∆t(i) is the time
interval (the sampling frequency of the Microstrain IMU is
250 Hz) andr̈(i)k is the acceleration in the sensor, measured
as Acc(i) in the accelerometer. For the state vectorX

(i)
k =

[(r
(i)
k )T , (ṙ

(i)
k )T , (∆Ψ

(i)
k )T ]T , the propagation of the estimated

covarianceP̂ (i)
k is:

P̂
(i)
k = F

(i)
k · P (i)

k−1 · (F
(i)
k )T +Q(i), (31)

whereQ(i) is the process noise andF (i)
k is the state transition

matrix,

F
(i)
k =





I3 I3 ·∆t(i) 0

03 I3 [−C
n(i)
b,k Acc(i) ×]∆t(i)

03 03 I3



 . (32)

When an additional measurementm(i)
k is presented (the

Ubisense tag can provide position updates at 10 Hz), the states
X

(i)
k can be updated from the previous estimateX̂

(i)
k and the

measured value (mh
k = Poshk for the UWB/IMU system) as:

X
(i)
k = X̂

(i)
k +Kk(m

(i)
k −H

(i)
k · X̂(i)

k ) (33)

P
(i)
k = (I −K

(i)
k ·H(i)

k )P̂
(i)
k , (34)

whereH(i)
k is the observation matrix (Hh

k = [I3, 03, 03] for
the Ubisense system) and the Kalman gainK

(i)
k is:

K
(i)
k = P̂

(i)
k · (H(i)

k )T · (K(i)
k · P̂ (i)

k ·HT
k +R(i))−1 (35)

andR(i) is the measurement covariance. After each measure-
ment update the orientation is corrected as:

C
n(i)
b,k = e[∆Ψ(i) ×] · Ĉn(i)

b,k , (36)

and the orientation error is reset.

B. Foot-Mounted INS

The PDR system used in this paper is an open source
embedded foot-mounted INS implementation, including both
hardware and software design called OpenShoe [23]. The
system is based in an Analog Devices ADIS16367 IMU
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(Accelerometer and Gyroscope but no Magnetometer) and an
Atmel AVR32UC3C microcontroller, capable of transmitting
the raw data from the IMU or a preprocessed Position, Velocity
and Orientation. The IMU is placed in the heel of a boot for
an easily detected stance and a more realistic zero velocity
phase.

The foot-mounted INS or PDR is based in the use of an
INS with the signals from an IMU in the foot of the person.
Due to the nature of the inertial navigation using consumer
grade IMUs, the standard deviation of the position error grows
proportional to the cubic time and after just a few seconds the
estimation is usually several meters wrong.

For a pedestrian with an IMU in the foot, it is possible to
identify the stance phases of the walking pattern and force the
velocity to be zero, and therefore limit the growth of the po-
sition error covariance. In [1] and [3] several stance detection
methods and the effect on the navigation are discussed. Using
an EKF it is possible to track the errors of the navigation
and eliminate them, the resulting increment of the standard
deviation of the position error is approximately linear with
the traveled distance.

One of the main sources of error in an inertial navigation
is the heading error, some authors like [2], [5] use the
magnetic field to obtain information on the attitude, but in the
OpenShoe, there is no magnetometer available and it becomes
an unobservable state. The PDR estimation provides good
relative positioning without the use of external hardware,but
it requires an initialization and occasional position updates to
limit the error grow.

The proposed navigation solution for the foot (indexf )
is based on the tracking of the estimated orientation of the
foot sensorĈn(f)

b,k and the estimated states, the error of the

orientation∆Ψf
k in the navigation frame, the positionrfk and

the velocity ṙfk . The system evolves according to (28)-(36)
where i = f (the sampling frequency of the OpenShoe is
825 Hz). If a stance is detected a ZUPT measurement is
implemented, where the velocity is zero (mf

k = [0, 0, 0]T )
and the observation matrix isHf

k = [03, I3, 03].

C. Joint Navigation System

Due to the fact that the two IMUs have different sampling
rates, the measurements from the head and foot are not
simultaneous. We propose an asynchronous implementation,
where the joint state vector isXk = [(Xf

k )
T , (Xh

k )
T ]. Each

system is propagated when a new IMU sample is available (if
only one system receives an IMU sample the other remains
the same), according to (28)-(32) where the state transition

matrix is:

Fk =



























































[

F f
k 09

09 I9

]

Foot IMU sample,

[

I9 09

09 Fh
k

]

Head IMU sample,

[

F f
k 09

09 Fh
k

]

Both IMUs samples

. (37)

Similarly the process noiseQ will be

Q =



























































[

Qf 09

09 09

]

Foot IMU sample,

[

09 09

09 Qh

]

Head IMU sample,

[

Qf 09

09 Qh

]

Both IMUs samples

. (38)

If a stance or a Ubisense positioning is detected, the states
will be updated with (33)-(36), where the measurementmk

will be:

mk =











[0, 0, 0]
T ZUPT,

[

Poshk
]

Ubisense position,
[

0, 0, 0, (Poshk)
T
]T

Both measurements

. (39)

The observation matrixHk will be:

Hk =











































[

Hf
k 03×9

]

ZUPT,

[

03×9 Hh
k

]

Ubisense position,

[

Hf
k 03×9

03×9 Hh
k

]

Both measurements

. (40)

The measurement covarianceR will be:

R =



















[

Rf
]

ZUPT,
[

Rh
]

Ubisense position,
[

Rf 03

03 Rh

]

Both measurements

. (41)

Both systems are related only by the fact that there is a
maximal distance between them and without this information
a joint navigation system is equivalent to having both INS
independently, but by applying the constraint, the navigation
points will have a crosscorrelation and it will decrease the
error growth rate. For the constraint we define the matrixL
for an ellipsoidal bound:

L =
[

Id 03×6 −Id 03×6

]

, (42)
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where

Id =





1/d1 0 0
0 1/d2 0
0 0 1/d3



 . (43)

As a way to evaluate the maximal distance between the
navigation points, we recorded the position of the head and
feet with a camera motion capture system during a straight
walk in a treadmill and a random walk in a limited area. In
figure 1 it is possible to observe that the relative positionsare
mainly distributed around an ellipsoid centered in the point
[0, 0, 1.65]T m and with a variation of around 0.2 m in the Z
axis and 0.5 m in the XY plane.

Fig. 1. Relative position of the head with respect to the foots recorded with a
camera motion capture system a. Distribution in the XY plane. b. Distribution
in the radius vs. height plane

We propose the use of an ellipsoidal constraint withd1 =
0.6 m,d2 = 0.6 m, d3 = 0.3 m andγ = 1, between the head
and the foot displaced to the head height as a way to limit
the relative position between the foot and the head, leaving
a margin for the positioning error. The foot position can be
obtained subtracting the person height torfk . This proposed
limit uses a tighter bound that accelerates the effect of the
filter.

D. UWB PDR simulation

As a way to test the behavior of the constraint and compare
it with other approaches we propose a Monte Carlo simulation
based on the noiseless synthetic foot positions (r

(f)
k ), the

corresponding IMU signals from [1] and a generated head
position (r(h)k ) and corresponding accelerations and turn rates
for a pedestrian.

The signals were based in the closed loop data set proposed
for the foot of a person walking 10 counterclockwise closed
loops. The head is positioned at a constant height of 1.8 m
and moves at an approximately constant speed, 0.1 m on the
left of the path of the foot, IMU signals were obtained from
the analytical representation of that position

Both points will have a maximal distance of less than 2 m,
but as observed in the relative distance distribution of figure 1,
the bound can be shortened to 0.6 m in the XY plane and 0.3 m
in the Z axis.

The filters track the position, velocity and orientation error
in both points using the IMU signals from the head and
the foot (both sampled at 100 Hz and with noise recorded
from a standing still IMU) and the position obtained from a
simulated UWB system that provides a position measurement
with Gaussian noisePoshk ∼ N (r

(h)
k , RUWB) at 5 Hz. The

foot positioning is obtained using ZUPT.
The evaluated algorithms will be a reconstruction without

the constraint (the upper bound), a constrained system with
bounds as previously proposed and a constrained system with
a bigger bound (d1 = 1 m,d2 = 1 m, d3 = 0.5 m andγ = 1).
We will observe the obtained positioning for a single case and
perform a Monte Carlo simulation, executing the algorithms
100 times and adding noise to each IMU and UWB Position
signal (RUWB = I3 · 1 m2 error). The estimated positions
(r̂(f)k andr̂(h)k ) will be evaluated using the Root Mean Squared
Errors (RMSE) of the positions.

In figure 2 the trajectory of both systems is observed
without a bound in the distance, the foot position as a inertial
navigation algorithm starts to accumulate heading errors that
affects the positioning, while the head position presents a
limited amount of error. In figure 3, by using the distance
bound, both trajectories go side by side around the closed
trajectory, with small fluctuations due to the measurements.
The foot position keep a correct orientation and the head
position appears to have less error than the unconstrained
approach.

In figure 4 the evolution of the RMSE is observed for
the studied methods. The unconstrained method generates the
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Fig. 2. Reconstruction of the position of the foot and the head without a
constraint

upper bound for error growth, significantly higher due to the
loss of the heading in the foot position estimation. In the case
of the UWB/INS method, it reduces the error compared to
the UWB alone measurements, thanks to the introduction of
the IMU. The constrained approach has an even lower error
growth, due mainly to the correction of the orientation in
PDR. The use of tighter bounds accelerate the convergence
and diminish the error for the head (UWB/INS) estimation and
remains approximately the same for the foot (PDR) estimation,
but if the bound is too low, the occasional points outside of
the bound might affect the measurements and generate abrupt
higher errors.

IV. EXPERIMENTAL EVALUATION

For the evaluation of the system we recorded the IMUs and
Ubisense positioning for a person walking counterclockwise
in the R1 experimental space of KTH with a Laptop as can be
observed in figure 5. An additional UWB tag was placed in the
foot for an easier synchronization of the UWB and IMUs data,
the position updates from this point were not used because it
presented a significant amount of outliers due to a poor line
of sight.

The signals of the IMU in the foot (OpenShoe) were
recorded at 825 Hz, the IMU in the head had a sampling rate of
250 Hz and the update rate of the UWB tag in the head was 5
Hz. Both IMUs shared the laptop’s CPU time frame, the UWB
tags in the head and in the foot shared the same UWB system
time frame. All the measurements were manually converted,
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Fig. 3. Reconstruction of the position of the foot and the head with a
constraint of 1 m in the XY plane and 0.5 m in the Z axis

off-line, to a common time frame matching the motion of the
foot perceived from the UWB and with the PDR.

For the experiment the test subject walked 10 counterclock-
wise loops in an octogonal shape pattern of approximately
8.5 m by 9 m around the central area of the R1 experimental
space at KTH. Figure 6 shows the independent position recon-
struction of the UWB and the PDR system, a constant noisy
positioning can be observed in the first and the accumulation
of error produced by the heading in the second, due to the
lack of an initial yaw value for the foot navigation point.

Figure 7 shows the position reconstruction using the con-
straint in the distance between the UWB/IMU in the head
and the PDR system in the foot. Due to the unknown initial
heading, the movement starts with a wrong path, but it start
correcting the yaw and after some steps converges with the
correct path.

The constraint filter allows a correct adjustment in situations
were two navigation points are presented, one with a bounded
error and another with a incrementing error, but with a good
relative positioning. The cost of the constraint filter is the
computation time required to estimate the mean and covariance
of the bounded pdf, but with a 100 Hz IMU signal, it can
calculate the position in real time. Due to the non Gaussian
Position error, the constraint filter has a slightly worst effect
than in the simulations, however it is able to correct wrong
orientations and diminish the errors in each system.

We have observed that if the standard deviation of the
position measurement updates is higher than the bounded
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Fig. 4. Evolution of the Root Mean Squared Errors (RMSE) for the different
methods studied
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Fig. 5. Equip used during the evaluation of the system

region, the single navigation point with position updates has
the same performance than the constraint filter and due to the
computation time, it is preferable.
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Fig. 6. Independent reconstruction of the position for an IMU in the
head with UWB position measurements and an IMU in the foot with ZUPT
measurements

V. CONCLUSIONS

We have presented a method for improving the estimation
of two navigation points with the information that there is
a maximal distance between them. The method is based on a
constraint filter, which truncates the pdf of the relative position
according to the established bound and estimates a new mean
and covariance for the joint system.

The use of the constraint filter bounds the positioning
error of a PDR estimation with respect to another positioning
system, in our case UWB. In the lack of position updates,
the filter lower the error growth of the UWB/INS system
(approximately quadratic with time) to that of a PDR (linear
with the traveled distance).

The constraint filter using a pdf truncation offers a way of
propagating the statistics of the navigation states, but requires
many calculations for the approximations of the truncated pdf
mean and covariances. The state transformation used offers
a faster method for their calculation and permits the use of
a denser grid. Future work should include ways to reduce
the calculation time of this approximations, better modelsfor
the truncated pdf, taking into account the non-line-of-sight
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Fig. 7. Reconstruction of the position for an IMU in the head with UWB
position measurements and an IMU in the foot with ZUPT measurements and
a bound between the distance of both systems

conditions and the comparison of the effect of this fusion with
several LPS systems or PDR systems.
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