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Abstract—Traditionally, positioning with WLAN Received Sig-
nal Strength (RSS) fingerprints involves the laborious task of
collecting a radiomap with a reference mobile device. Best
accuracy can be guaranteed only in case the user carries the
same device, while positioning with different devices requires a
calibration step to make the new devices’ RSS values compatible
with the existing radiomap. We propose a novel device self-
calibration method that uses histograms of RSS values. First,
we use the existing radiomap to create the RSS histogram of the
reference device. Subsequently, when the user enters a building
and starts positioning, the observed RSS values are recorded
simultaneously in the background to create and update the
histogram of the user device. We use these RSS histograms to fit
a linear mapping between the user and reference device.

Our calibration method is running concurrently with position-
ing and does not require any user intervention. Experimental
results with five smartphones in a real indoor environment
indicate that soon after positioning is initiated the device is self-
calibrated, thus improving the accuracy to be comparable with
the case of using a radiomap created with the same device.

Keywords: Wireless networks; Positioning; Signal strength

fingerprints; Device calibration; Histograms.

I. INTRODUCTION

Location-oriented services and applications are becoming

increasingly popular and are expected to be widely used in

the following years, especially in large indoor environments,

such as shopping malls, exhibition centers, airports, hospitals,

etc. This is mainly due to the fact that people tend to spend

much of their time indoors and they are making increasing

use of their smart mobile devices that feature high processing

power and wireless connectivity.

Positioning based on WLAN technology is a popular so-

lution and has attracted research interest, even though its

accuracy is reported to be limited to a few meters. This

popularity is because of the ubiquitous WLAN infrastructure,

i.e. Access Points (AP), and the availability of WLAN cards

on the vast majority of portable electronic devices, which

provide access to different types of measurements such as

Received Signal Strength (RSS). The RSS values are location-

dependent, thus enabling location determination, while they

are already monitored as part of the standard WLAN func-

tionality for network operation reasons and can be easily

recorded on the device. In this context, several positioning

methods use a number of RSS fingerprints collected a priori

with a device at some predefined reference locations to create

the radiomap of the area. During positioning, location can

be estimated by finding the best match between the current

fingerprint measured with the same device and the fingerprints

in the radiomap [1]–[3].

Using a different device is feasible, but the RSS values

are not usually compatible with the radiomap, leading to

accuracy degradation and limiting the applicability of the RSS

fingerprinting approach. Different mobile devices do not report

the same RSS values from the APs in the vicinity, even if

they are placed in the same location. This is mainly due to

the WLAN (IEEE 802.11) standard specification that defines

an 1 byte integer, known as the RSS Indicator (RSSI), for

measuring the RSS values in the range between 0 and 255. To

make things worse, the actual implementation of each vendor

is limited between 0 and a specific maximum RSSI value, so

the RSSI levels may differ significantly among various chipsets

[4]. The RSSI values are used internally by the device driver to

report the actual power in dBm (e.g., for determining the signal

quality), however this mapping is proprietary information. The

result is that each vendor has its own measurement accuracy,

granularity and dynamic range of RSS values, not to mention

the receiver sensitivity that makes two WLAN cards detect a

variable number of APs at the same location. Even the same

chipsets may not report the same RSS values due to different

antennas or different device packaging material [5].

Device diversity is one of the reasons that hinders the pro-

liferation of RSS-based positioning systems. This is because

best accuracy can be guaranteed only in case the user carries

the same device during positioning, while supporting different

types of devices requires a calibration step to make the new

device compatible with the existing radiomap. To this end,

several calibration solutions have been studied in the literature;

these fall under two main categories. Methods in the first

category try to remove the device-dependent component in the

RSS values, e.g. due to device-specific antenna characteristics,

so that the resulting fingerprints from heterogeneous devices

are compatible with each other [6]–[9]. Methods in the second

category rely on RSS data fitting to create a mapping between

the RSS values collected with different devices, e.g. using

standard least squares fitting. However, these methods require

the collection of a considerable volume of data at several
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known (denoted as manual calibration) or unknown locations

prior to positioning [10]–[13].

In this context, our contribution is twofold. First, we study

the manual calibration approach and investigate the amount

of RSS data that need to be collected at known locations

with different devices, so that adequate positioning accuracy

is achieved for these devices. Second, and more important,

we propose a new method based on RSS histograms that runs

concurrently with positioning and enables a mobile device to

be self-calibrated in a short time, thus improving the posi-

tioning accuracy on-the-fly. Moreover, no user involvement in

the calibration phase is required (e.g., visiting several locations

and pressing a calibration button on the device) and the tedious

data collection is avoided.

We discuss the related work in more detail in Section II. In

Section III, we provide some preliminaries on signal strength

fingerprinting and present our measurement setup. Section IV

describes the manual calibration approach and investigates

the amount of data it requires. We provide the details of

the proposed self-calibration method in Section V and we

assess its performance in Section VI using experimental data

collected with five commercial mobile devices inside a real

office environment. Finally, we conclude this work and discuss

our future plans in Section VII.

II. RELATED WORK

Device calibration has recently attracted the research in-

terest, due to the requirement for the provision of accurate

and reliable location estimates when heterogeneous mobile

devices are considered. To address this issue several works

try to remove the device-dependent component in the RSS

values, given by the log-distance radio propagation model

RSS[dBm] = A− 10γ log10 d+X. (1)

In this model, d denotes the distance between the transmitter

(e.g., a WLAN AP) and the receiver (e.g., a mobile device),

while the intercept term A provides the RSS value when

d = 1m and encapsulates device specific characteristics,

such as the antenna gain. The coefficient γ depends on

the propagation environment, while X ∼ N (0, σ2
n) is the

Gaussian noise disturbing the RSS values. In this context,

authors in [7] use RSS differences, instead of absolute RSS

values, to form the fingerprints either by taking the difference

between all possible AP pairs or by subtracting the RSS value

of an anchor AP (e.g., the AP that provides the strongest RSS

value) from the other RSS values. This effectively removes

A in (1) and makes the RSS difference fingerprints from

diverse devices compatible with each other. However, this

may degrade the positioning accuracy because RSS differences

exhibit higher noise variance, as explained in Appendix A. A

similar approach uses normalized log ratios of the RSS power

from different APs to remove the device-dependent component

[8]. Other methods rely on ranked, rather that absolute, RSS

values (i.e., RSS values from a set of APs are ranked from high

to low) because the ranking is not affected by device-specific

hardware features [6], [9]. However, ranked-based fingerprints

are expected to perform worse, compared to standard RSS

fingerprints, because the fine-grain information of the RSS

levels is lost when ranks are used.

On a different line, other methods rely on RSS data fitting

to create a mapping between different devices. Such methods

are motivated by the linear relation between the RSS values

reported by heterogeneous devices, which has been observed

experimentally in several studies. One approach referred to

as manual calibration [10], is to collect a series of RSS

measurements at several known locations with a pair of devices

and subsequently the linear parameters are estimated through

least squares fitting [10], [12], [13]. Instead of least squares

fitting, authors in [11] create the empirical cdfs for several

devices using the RSS values collected at known locations

and then use the inverse cdf function to build a database of

device models that map the RSS values of a user device to

a reference device. However, this method is applicable to a

limited number of device pairs, while the selection of the

appropriate model during positioning relies on the existence

of an easily distinguishable location (e.g., building entrance or

exit) that may never be visited by the user.

Device calibration with RSS data recorded by the user at

unknown locations is feasible, but computationally expensive

methods are required to obtain the linear fitting parameters.

For instance, the parameters can be estimated by maximizing

the confidence value produced by Markov localization [10]

or with a weighted least squares method [12]; we call these

quasi-automatic, as opposed to manual, calibration methods.

In automatic calibration, RSS data collected at unknown

locations are used as in the quasi-automatic case, however the

objective is to minimize the user intervention and ideally per-

form positioning and device calibration simultaneously, while

the user walks freely inside the area of interest. To this end, an

expectation maximization (EM) algorithm is proposed in [10],

while authors in [12] detect when the user is stationary during

positioning in order to divide the data into parts which come

from the same unknown location and then use these data with

their quasi-automatic calibration approach. An unsupervised

learning method is proposed in [5] that uses EM and neural

networks algorithms to obtain the fitting parameters from the

Pearson product-moment correlation coefficient. Authors in

[14] make an early, rather sketchy, mention of the possibility

of using histograms for automatic device RSS calibration.

III. SIGNAL STRENGTH FINGERPRINTING

A. Preliminaries

Several solutions to the location determination problem us-

ing RSS fingerprints have been studied in the literature. These

approaches differ in the underlying positioning algorithm,

however they all rely on a RSS radiomap that covers the entire

area of interest; see [15] and references therein. Fingerprint-

based positioning consists of two phases, namely the offline

(training) and the online (positioning) phases.

Offline phase: We use a set of predefined reference locations

{L : ℓi = (xi, yi), i = 1, . . . , l} to collect RSS measure-

ments from n APs using a reference device D0. A reference
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Fig. 1. Experimental setup at KIOS Research Center. Reference locations
used during the offline training phase are shown with blue circles; the
positioning phase route is shown with a red line.

fingerprint ri = [ri1, . . . , rin]
T associated with location ℓi

is a vector of RSS samples and rij denotes the RSS value

related to the j-th AP. Usually, ri is averaged over the multiple

fingerprints collected at ℓi so that only one fingerprint, i.e.

ri =
1
M

∑M

m=1 ri(m), is stored in the RSS radiomap followed

by the physical coordinates (xi, yi). With this preprocessing

we reduce the effect of noise in RSS measurements and

outlier values, while the radiomap is compressed leading to

a significant decrease in the location estimation time.
Online phase: During positioning, we exploit the reference

data to obtain a location estimate ℓ̂, given a new fingerprint

s = [s1, . . . , sn]
T measured at the unknown location ℓ by

some device Di, i = 0, . . . , Nd. The positioning algorithm

tries to find the best match between the currently observed

fingerprint s and the reference fingerprints ri in the RSS

radiomap. Various positioning algorithms have been presented,

such as deterministic and probabilistic approaches [1]–[3],

assuming that the offline and online phases are performed

with the same device D0. In this work we allow the online

device to be any device Di, i = 0, . . . , Nd and focus on

the improvement achieved solely by our device self-calibration

method, rather than the fingerprint-based positioning algorithm

itself. Thus, our results are obtained using the well known

Nearest Neighbor (NN) method [1] that estimates location by

minimizing the Euclidean distance di, between the observed

fingerprint s and the reference fingerprints r̄i

ℓ̂(s) = argmin
ℓi

di, di =

√√√√
n∑

j=1

(
r̄ij − sj

)2
. (2)

All reference locations are ordered according to di and location

ℓi with the shortest distance between r̄i and s in the n-

dimensional RSS space is returned as the location estimate.

Note that the proposed self-calibration approach is indepen-

dent of the underlying positioning algorithm and using a more

sophisticated approach, such as the wide kernel probabilistic

method of [13], is expected to further improve accuracy.

B. Measurement Setup

We performed our measurement campaign for collecting

RSS data at KIOS Research Center. This is a 560m2 typical

office environment that consists of several open cubicle-style

and private offices, labs, a conference room and corridors

(Fig. 1). We have installed 9 APs that use the IEEE 802.11b/g

standard and provide full coverage throughout the floor. We

used 5 different mobile devices for our data collection, namely

a HP iPAQ hw6915 PDA with Windows Mobile, an Asus

eeePC T101MT laptop running Windows 9, an HTC Flyer

Android tablet and two other Android smartphones (HTC

Desire, Samsung Nexus S).
For our training data we recorded fingerprints, which con-

tain RSS measurements from all 9 APs, at 105 distinct

reference locations by carrying all 5 devices at the same

time. A total of 2100 training fingerprints, corresponding to

20 fingerprints per reference location, were collected at the

rate of 1 sample/sec with each device. These data are used to

build device-specific radiomaps by calculating the mean value

RSS fingerprint that corresponds to each reference location.

We point out that the device-specific radiomaps are needed

only for comparison purposes.
We collected additional test data two weeks later by walking

along a predefined route. The route has two segments and

consists of 96 locations most of which do not coincide with the

reference locations; see Fig. 1. One fingerprint was recorded

at each test location. We followed the same route 10 times

and collected our test data simultaneously with all devices.

IV. MANUAL DEVICE CALIBRATION

Several experimental studies have reported a linear relation

between the RSS values reported by heterogeneous devices

[10], [12], [13]. Thus, if a sufficient number of colocated RSS

pairs (i.e., collected at the same location and time with two

different devices) is available, then the linear parameters can

be estimated through standard least squares fitting. To put it

formally, for two devices D1 and D2 we use the RSS data in

the respective radiomaps to compute the parameters by:

r̄
(2)
ij = α12r̄

(1)
ij + β12 (3)

where r̄
(1)
ij and r̄

(2)
ij denote the mean RSS value at location ℓi

from the j-th AP for D1 and D2 respectively, while α12 and

β12 are the linear parameters for mapping the RSS values from

D1 to D2. Some indicative correlation plots for various pairs

of devices are shown in Fig. 2. These plots confirm the linear

relation between the RSS values reported by heterogeneous

devices and justify the effectiveness of first order polynomials

for device calibration.

An important question is how much data should be collected

with a new device Di, i 6= 0 to achieve a good mapping to

the reference device D0 and guarantee acceptable accuracy

when this new device is used for positioning. For instance, if

a considerable volume of RSS data that spans the whole area

of interest needs to be collected with another device, then this

new dataset may as well be used as a second radiomap that will

be employed whenever this specific device is carried by a user.

Thus, manual calibration is only justified if a small number of

RSS fingerprints collected at a few calibration locations suffice

to obtain an adequate mapping. Authors in [10] report that in
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(c) Asus eeePC – Samsung Nexus S pair.

Fig. 2. Correlation plots using colocated pairs of mean RSS values collected at all 105 known locations with different devices.
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(b) Convergence of the 95% error disk radius.

Fig. 3. Performance of the manual device calibration using a small amount of RSS data.

their setup, where around 15 APs are detected at each location,

manual calibration is very effective when RSS fingerprints

collected at three to five locations are used for fitting. Our

experimental results are in agreement and in the following we

provide a justification to support this observation.

Suppose that the colocated RSS pairs from two different

devices y = [r̄
(1)
ij , r̄

(2)
ij ]T follow a normal distribution, i.e.

y[k]|x iid∼ N (x,R), where x is a bivariate random vector and R
is the covariance matrix. Roughly speaking, x and R represent

the center and the shape of the cloud of RSS pairs in this 2-

D space, respectively; see Fig. 2. In the linear fitting (3), the

parameter β12 is directly related to the cloud center x, while

the parameter α12 is related to the principal axis of the cloud

shape R. For brevity, we assume that R is known, i.e. α12

value is fixed, and in the following we study the behavior of

the cloud center x for increasing number of RSS pairs that

provides insight into the convergence of the β12 parameter1.

Assuming prior distribution x ∼ N (m[0], P [0]), the pos-

terior distribution given a series of colocated RSS pairs is

1The simultaneous estimation of x and R is also possible by treating them
both as unknown and assuming a flat prior for x and a Wishart prior for R
and then using recursive formulas for the posterior means of x and R given
y[1:k], as discussed in [16].

x|y[1:k] ∼ N (m[k], P [k]) with

P [k] = P [k − 1]− P [k − 1](P [k − 1] +R)−1P [k − 1] (4)

m[k] = m[k−1]+P [k−1](P [k−1]+R)−1(y[k]−m[k−1])
(5)

These equations [17] are used for recursively updating m[k]
and P [k] and improve the estimate of x by sequentially

processing the RSS observations from pairs of devices. By

Chebyshev’s inequality, the disk with center m[k] and radius

r =
√

trace(P [k])/0.05 contains x with probability at least

95% [17]. It can be shown that trace(P [k]) ≤ trace(R)/k
and consequently the 95% disk’s radius is proportional to

1/
√
k. As a rule of thumb, to get for example 10 times better

accuracy, 100 times more data are required. We may use the

sample covariance estimator to calculate R from a series of

colocated RSS pairs y[1:k] and study the 95% error disk’s

radius by plotting
√

trace(R)/(0.05k). The center of the RSS

cloud (shown in green) for increasing number of locations that

contribute their mean RSS pairs to the fitting is illustrated in

Fig. 3a. Note that these locations are uniformly distributed and

each location contributes 9 RSS pairs. It is observed that the

center x, when data from few locations are used, converges

quickly to the center obtained when data from all 105 locations

(i.e., around 945 RSS pairs) are considered. Moreover, the 95%
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TABLE I
POSITIONING ERROR [M] USING VARIABLE NUMBER OF LOCATIONS.

Uncalibrated All 20 5

Mean 7.6 2.7 2.7±0.0 2.9±0.2
Median 7.3 2.3 2.3±0.0 2.4±0.1
67%cdf 9.4 3.0 3.0±0.0 3.1±0.3
95%cdf 15.7 6.2 6.3±0.3 7.0±0.8
Max 19.1 16.2 15.0±1.3 14.6±1.1

error disk’s radius decreases as the number of locations grows

from 1 to 40, indicating that colocated RSS pairs from 15 to

20 locations seem to suffice; see Fig. 3b.

The above analysis justifies the effectiveness of the manual

calibration using a small amount of data and in practice we

observed that around 5 known locations uniformly selected

inside the area of interest can provide good device calibration.

The statistics of the positioning error pertaining to the whole

test set are listed in Table I using the HP iPAQ and the HTC

Flyer as reference and new device, respectively. These results

indicate that the positioning accuracy can be significantly

improved when manual calibration is applied. For instance,

the mean error decreases to 2.7m when we use colocated

RSS pairs collected with the HTC Flyer at all 105 reference

locations, compared to 7.6m when no device calibration is

applied. Interestingly, we observe that using 20 or only 5

locations (i.e., 180 or 45 colocated RSS pairs) for manual

calibration has marginal effect on the positioning error. Note

that in the cases where few reference locations are considered

for manual calibration, the results pertain to 10 experiments

assuming different subsets of randomly selected locations.

These results confirm that manual device calibration with

colocated RSS pairs collected at known locations is a very

effective approach. More importantly, when the area of interest

is covered by several APs then only a few locations need to

be visited with an uncalibrated device, thus reducing the time

and labour overhead for calibrating a new device. However,

this approach has limited applicability in real-life applications

where a user enters an indoor environment, such as shopping

malls, airports, etc., carrying an uncalibrated device because

he or she has to be guided to specific known locations for

collecting RSS data. This implies that the user is already

familiar with the area of interest which is usually not the case

and a considerable data collection effort is still required by

the user prior to positioning.

V. DEVICE CALIBRATION

Our objective is to develop a fully automatic approach

that does not require any user intervention and we do so

by exploiting histograms of RSS values collected with the

reference and user device.

A. RSS Histograms

The RSS histograms of three different devices are shown

in Fig. 4. These histograms correspond to the mean RSS

values of all 9 APs collected at all 105 known reference

locations. The first observation is that two histograms may

Reference 
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Device 
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Fig. 5. Block diagram of the proposed self-calibration method.

differ significantly with respect to the range of RSS values, as

well as the probability of each RSS value, e.g. the HP iPAQ

and HTC Flyer device pair. On the other hand, the respective

histograms for some device pairs can be quite similar, as in the

case of Asus eeePC and HTC Flyer. This is also evident from

the equivalent empirical cumulative distribution function (cdf)

of each device, as shown in Fig. 4d. We have observed that the

empirical cdf of the raw RSS values, recorded while walking

around with a particular device for a few seconds, resembles

the respective empirical cdf of the mean RSS values collected

with the same device at several uniformly distributed known

locations. This implies that we may exploit these empirical

cdfs to perform device calibration during positioning.

B. Self-calibration method

The main idea in the proposed self-calibration method is the

use of RSS histograms for obtaining a mapping between the

reference and various user devices. The block diagram of our

method is shown in Fig. 5. First, we use the existing radiomap

that contains the mean value fingerprints r̄i to obtain the RSS

histogram of the reference device. Subsequently, when the user

enters a building and starts positioning, the RSS values in

the currently observed fingerprint s(k) are recorded simulta-

neously in the background in order to create and update the

histogram of raw RSS values for the user device. Then, we use

the RSS values that correspond to specific percentiles of the

empirical cdf to fit a linear mapping of the form (3) between

the user and reference devices. Subsequently, the parameters

(α, β) are used to transform the RSS values observed with

the user device and obtain the new fingerprint s̃(k), which is

compatible with the radiomap, and then estimate the unknown

location ℓ̂(k) with any fingerprint-based algorithm.
Let Fr(x) and Fu(x) denote the empirical cdfs of the

reference and user devices, respectively. In general the cdf

F (x) gives the probability of observing an RSS value that is

less than x, while the inverse cdf F−1(y) returns the RSS

value that corresponds to the y-th cdf percentile. We use the

RSS values that correspond to the 10-th, 20-th, . . ., 90-th

percentiles of the empirical cdf to fit a least squares linear

mapping between the user and reference devices and estimate

the parameters (α, β) according to

F−1
r (y) = αF−1

u (y) + β, y ∈ {0.1, 0.2, . . . , 0.9}. (6)

A formal proof on the validity of the least squares mapping

(6) that uses the inverse cdf percentile values to reveal the
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underlying functional relationship between the RSS values

collected with diverse devices is provided in Appendix B.

Subsequently, the observed fingerprint s(k) is transformed

using s̃j(k) = αsj(k) + β, j = 1, . . . , n.

While the user is walking the current fingerprint s(k)
contributes only a few RSS values and Fu(x) does not change

significantly between two consecutive samples. Thus, it is

not necessary to update Fu(x) every time a new fingerprint

s(k) is available, but rather one can buffer the RSS values

contained in a number of successive fingerprints and then

update Fu(x) before performing the linear fitting. We have

experimentally selected the buffer size b = 10 that works well

in our setup, i.e. (α, β) are recalculated every 10 seconds. At

the beginning, we initialize the parameters to (α, β) = (1, 0),
i.e. no transformation is performed, to handle the positioning

requests until the buffer is full and the parameters are estimated

for the first time. Using a lower value for b does not seem to

improve the positioning accuracy, while it introduces unneces-

sary computational overhead. On the other hand, increasing b
means that the parameters are not updated frequently enough

and the performance is degraded, especially at the beginning

until (α, β) are estimated for the first time.

The proposed method is simple, yet very effective and does

not require any user intervention, unlike the existing RSS data

fitting approaches. Moreover, our self-calibration method is

running concurrently with positioning, while the user walks

freely inside the area of interest, and there is no need to dwell

at various locations for collecting several RSS samples.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed self-calibration method using

experimental data collected with five devices in a real office

environment, as described in Section III-B. We compare its

performance for all device pairs against the manual calibration

approach [10], [12] that uses the mean RSS values collected

with the new device at all 105 locations visited with the

reference device. We also report the positioning accuracy in

the two extreme cases of no calibration and using a device-

specific radiomap collected with each device that provide the

upper and lower bound on the performance, respectively.

We investigate the mean positioning error ǭ per route, which

is averaged over the 96 distinct test locations. The statistics

for ǭ pertaining to all 10 routes are depicted as boxplots in

Fig. 6a and Fig. 6b for the iPAQ – Flyer and the eeePC – Flyer

pairs, respectively. The first observation is that ǭ does not vary

significantly among different test routes. For the iPAQ – Flyer

pair, positioning without calibrating the Flyer device leads to

significant performance degradation; the median of the mean

error ǭ is 7.5m compared to 1.9m in case we use a radiomap

collected with the Flyer, rather than the iPAQ, device. Our self-

calibration method is very effective and achieves performance

similar to the manual calibration approach (i.e., the median

of ǭ is 3m compared to 2.6m as shown in Fig. 6a), but with

considerably less effort. On the other hand, the Asus eeePC

seems to be more appropriate for positioning the Flyer device,

as the median of ǭ is increased by 1m when no calibration

is performed compared to the case of using a device-specific

radiomap. Yet, our method is beneficial (the median of ǭ is

2.3m) and interestingly it performs slightly better compared

to manual calibration; see Fig. 6b.

We demonstrate the efficiency of our method on a single

route using the iPAQ radiomap, while the user carries the Flyer

device. The performance of our method is illustrated in Fig. 6c,

where we observe that in the first 10 seconds the accuracy is

not adequate, because the device is still uncalibrated. While

the user is walking the raw RSS values are collected in order to

build the RSS histogram that will be used for the calibration.

It is obvious that beyond that point, the user device has been

automatically calibrated and the positioning system delivers

accuracy as good as in the case of using a radiomap that is

created from data collected with the Flyer device.

The results for five devices are summarized in Table II. We

examine all device pairs and each row indicates the device

used as reference, while each column indicates the test device.

For every device pair the median of the mean positioning

error ǭ using our device self-calibration method is reported

and the corresponding positioning error when no calibration

is used is shown in parentheses. The entries in the diagonal

cells represent the best case scenario where the test and

reference devices are the same, i.e. a device-specific radiomap

is used for positioning. Looking at these results it is evident

that the proposed calibration method improves the accuracy

achieved by the NN positioning algorithm for all device pairs.

The improvement is bigger when the HP iPAQ or the Asus

eeePC are involved as either reference or test devices. For

the pairs involving only Android devices the improvement is

marginal, which is probably due to the fact that they report

the RSS values in a very similar way, thus device calibration

cannot offer significant improvement. We highlight that in all

cases, assuming a specific test device (e.g., the Asus eeePC

in the second column), our calibration method reduces the

positioning error compared to the no calibration case, while the

accuracy is very close to the accuracy achieved using device-

specific radiomaps.

As a last remark, in our self-calibration method we observed

that the successive α values, estimated while the user is

walking, are always around 1. This implies that we can

actually fit a unit slope linear mapping, i.e. fix α = 1 and only

estimate the parameter β using the following median estimator

β = med(F−1
r (y)− F−1

u (y)), y ∈ {0.1, 0.2, . . . , 0.9}. (7)

The advantage is that only one parameter, instead of two

parameters, needs to be estimated and the computational

overhead of the least-squares fitting in (6) is reduced. Our

experimental results with various devices indicate that the po-

sitioning accuracy when (7) is employed in our self-calibration

method is very close to the accuracy reported in Table II.

VII. CONCLUSIONS

Addressing the device diversity is important for the wide

acceptance of RSS-based indoor positioning systems. In this

paper, we presented a low-complexity, yet effective method
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TABLE II
MEDIAN OF THE MEAN ERROR ǭ [M], WITH AND WITHOUT CALIBRATION.

iPAQ eeePC Flyer Desire Nexus S

iPAQ 2.7 2.8 (6.6) 3.0 (7.5) 2.9 (8.4) 2.6 (7.7)
eeePC 2.8 (4.4) 2.3 2.3 (2.8) 2.6 (3.5) 2.5 (2.9)
Flyer 3.2 (5.9) 2.6 (3.0) 1.9 2.1 (2.3) 2.6 (2.7)
Desire 3.4 (6.1) 2.8 (3.2) 2.5 (2.5) 2.4 2.5 (2.6)
Nexus S 3.0 (6.2) 2.6 (2.8) 2.7 (2.7) 2.4 (2.5) 2.3

that allows any mobile device to be self-calibrated, shortly

after the user has started positioning. We use the existing

RSS radiomap and the RSS values observed while the user is

moving normally in order to create the RSS histograms of the

reference and new device, respectively. Self-calibration is then

achieved by a fitting a linear mapping between the histograms

of these heterogeneous devices, so that the observed RSS val-

ues are compatible with the available radiomap. Experimental

results with several mobile devices in a real office environment

demonstrate the effectiveness of the proposed approach.

As future work, we plan to investigate the performance of

our calibration method in larger scale setups featuring non

uniform AP infrastructure layouts. In such cases, weak RSS

values from APs located far from the user may prevail, thus

increasing the skewness of the RSS histograms.
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APPENDIX A

We show that the RSS difference values do not contain the

device-dependent intercept term A, however they suffer from

increased noise variance. Assume that a mobile device resides

at a location ℓ, which is covered by 2 WLAN APs, namely

AP1 and AP2. The RSS values recorded by the device are

given by

RSS1 = A− 10γ log10 d1 +X1 (8)

RSS2 = A− 10γ log10 d2 +X2 (9)

where di, i = 1, 2 is the distance from the i-th AP, while

X1, X2 ∼ N (0, σ2
n) are independent Gaussian noise compo-

nents disturbing the RSS values. Taking the difference of these

RSS values, denoted as RSSD12, gives

RSSD12 = RSS1 −RSS2 = 10γ log10
d2
d1

+X ′ (10)

where X ′ ∼ N (0, 2σ2
n) is the linear combination of X1, X2.

APPENDIX B

If u is a continuous random variable and y = f(u) with

monotonically increasing f then f = F−1
y

◦Fu. In particular,

the inverse cdf ordered pairs

{(ui, yi) = (F−1
u

(qi), F
−1
y

(qi)) : qi ∈ {0.1, . . . , 0.9}}

lie on the curve y = f(u).
Proof: We have

Fu(u) = P (u ≤ u) = P (f(u) ≤ f(u)) =

= P (y ≤ f(u)) = Fy(f(u)).

Applying F−1
y

to both sides gives the identity f = F−1
y

◦Fu.

Also, the components of the inverse cdf ordered pairs satisfy

yi = F−1
y

(qi) = F−1
y

(Fu(ui)) = f(ui).
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(a) HP iPAQ.
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(b) Asus eeePC.
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(c) HTC Flyer.
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(d) Empirical cumulative distribution function.

Fig. 4. Histograms of the mean RSS values from available APs at all 105 locations.
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(a) HP iPAQ radiomap – HTC Flyer user.
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(b) Asus eeePC radiomap – HTC Flyer user.
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(c) Positioning error in a single route.

Fig. 6. Performance of the signal strength self-calibration method.


