
2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Indoor Navigation on Wheels (and on Foot)
using Smartphones

Jó Ágila Bitsch Link, Felix Gerdsmeier, Paul Smith, Klaus Wehrle
Communication and Distributed Systems

RWTH Aachen University
Aachen, Germany

{jo.bitsch, felix.gerdsmeier, paul.smith, klaus.wehrle}@rwth-aachen.de

Abstract—While indoor navigation in unfamiliar surroundings
is challenging for pedestrians, it is even more so for persons
bound to a wheelchair. Additionally, the necessary Wi-Fi in-
frastructure for fine grained RF fingerprinting-based indoor
positioning is often unavailable. We propose a system completely
self-contained within current smartphones, that allows people,
wheelchair bound and others, to find their way in a building.

Building on top of our previous work, where we designed
and implemented a system based on step detection and path
matching, we extend the system for use on wheelchairs, where a
smartphone-based step detection mechanism is impossible.

We detect user speed by analyzing the optical flow encoded
in the motion vectors of a live H.263 video stream recorded
from the smartphone’s video camera. As the phone makes use
of specialized hardware for motion estimation, we show that this
process happens in real time and is very efficient.

While previously we only guided the user along a single path,
we now extend this for the case when a user departs from the
initial route, either voluntarily or because she is lost. For this,
we follow several candidate paths, where we model each distinct
position as a state and vary the transition between these states
based on the current bearing of the user.

Combining these approaches, we show the potential of
smartphone-based indoor navigation, resulting in an average
error (ALE) of less than 3 m, independent of the length of the
overall path and without the need for additional infrastructure.

Keywords—indoor navigation; pedestrian navigation; wheel-
chair navigation; map matching

I. INTRODUCTION

While outdoor navigation systems are readily available,
indoor navigation still poses a significant challenge, even more
so for mobility impaired users. Indoor maps are gaining more
attention. However, the problem lies in the availability of a
positioning system independent from expensive infrastructure
or calibration efforts.

Building upon our previous work, a self-contained,
smartphone-based indoor navigation system [1], we propose
two extensions: (1) In addition to step detection, we measure
the movement of a user through her smartphone camera. This
allows our system to be used with wheelchairs, producing
pseudo-steps, where step detection is not possible. (2) We lift
the previous restriction of users having to follow a specific
path. A user can take arbitrary ways through a building or
turn around on a path and the system accurately tracks her

progress through a building. Mapping her steps or pseudo-
steps to an available map allows us to compensate errors in
heading estimation and step detection.

We still put the focus of the overall system on the ability
to easily deploy it using only the hardware readily available
to the user, namely, her mobile phone. To create and share
indoor maps for a building, we make use of OpenStreetMap
[2], which provides a range of tools and infrastructure. As
our system only depends on step detection or the integrated
camera, it is possible to prepare such a map without the need
for extensive calibration or measurements.

Once we load the map for a given location to the smart-
phone, the system works completely offline. This makes its use
feasible for a wide selection of environments. On the one hand,
we can cater for static environments, such as public buildings,
or universities. On the other hand, the system is equally useful
for more dynamic environments, such as trade fairs, where a
changing set-up could incur significant additional overhead
for Wi-Fi fingerprinting. There is no requirement to make
these maps available publicly, allowing the use of our system
on factory floors and in similarly administratively restrictive
environments. Additionally, the independence from Wi-Fi also
allows the system to be used in hospitals, where additional RF
gear might interfere with equipment.

A. Contributions
The main contributions of this paper are:
1) Speed detection based on optical flow on smart-

phones: Making use of the integrated smartphone cam-
era and hardware-accelerated video compression, we de-
tect movement accurately even for users in wheelchairs.

2) Map matching without a predefined route or ad-
ditional infrastructure: The system accurately tracks
the user’s movement on a map. It dynamically follows
several candidate paths returning the best one to the user
and discarding non-matching candidate paths. It does not
need additional infrastructure such as Wi-Fi hotspots.

3) Metrics for localization algorithms: Aside from the
well-known Average Location Error, we propose Con-
secutive Stability as a measure how consistent an al-
gorithm’s position updates are with actual movement.
These can be used to judge the feasibility of novel indoor
positioning schemes for guiding a user in an indoor
navigation system.978-1-4673-1954-6/12$31.00 c© 2012 IEEE

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

II. RELATED WORK

Localization is the core of a navigation system. There
exist a multitude of different approaches, such as Lateration,
Fingerprinting, and Dead Reckoning. As we base our approach
on Dead Reckoning on smartphones, we focus on two main
aspects: (1) Optical flow for speed estimation. This allows
contact-free and slip-free speed detection for wheelchair users.
(2) Smartphone-based indoor navigation systems. These use
only the hardware available in a smartphone for positioning
and navigation.

A. Using Optical Flow for Speed Estimation

Optical flow plays an important role in contact-free speed
estimation. The principle consists of determining the distance
of the location of points on two pictures taken at different
times. Analyzing the pattern of optical motion across the
image area can provide information on the location, size or
speed of objects. This motion information is called the optical
flow. We can distinguish between several approaches using
optical flow to derive motion information.

Non-contact velocity sensors [3] provide speed estimations
by mounting additional equipment onto a vehicle. These
devices work with specialized hardware processing the image
information and calculating the velocities similar to an optical
mouse. Although the accuracy of these devices suffice our
needs, the required use of additional hardware and correct
installation make them infeasible for us.

Another approach, working with motion vectors, is pre-
sented by Hu et al [4]. They work with the video stream
of a stationary camera installed to monitor motorway traffic.
After initial automatic calibration they directly use the motion
vectors from the compressed video stream to derive the mean
speed of traffic.

OpenCV (Open Source Computer Vision Library) [5] is
a cross platform programming library supporting real-time
image processing routines. The library supports the calculation
of optical flow between two given images, but, as of the time
of writing, it only achieved near real-time performance on
low resolution images, i.e., smaller than 320 times 240 pixels
requiring the latest quad-core Android smartphones.

Luxenburger et al. [6] have shown in their recent work the
feasibility of using partial differential equations to achieve
better performance on mobile devices. They use a fast explicit
diffusion solver for optical flow calculation. However, their
calculation speed is several seconds for an image size of
176 by 144 pixels. We have to consider that this still lacks
performing speed estimation calculations and map matching
which we need for our application to be useful.

B. Smartphone-based Indoor Navigation Systems

Today there is a variety of smartphone-based indoor navi-
gation systems. We can subdivide the algorithms regarding to
the underlying sensors.

First, there are algorithms based on existing WiFi in-
frastructure. These systems measure the signal strengths of
surrounding access points and initiate location estimations

on the basis of signal patterns. Wi-Fi-based Fingerprinting
[7] starts with an offline phase and records reference data at
specific locations. A subsequent comparison of the local signal
strengths with the recorded patterns during the online phase
allows to approximate the current position. However, the need
of a previous training phase, and a continuous requirement for
the presence of reference signals limit the practical benefit of
these systems.

Second, there are radio independent systems on the basis of
motion and direction sensors. Those systems use accelerometer
data to identify steps and compass or gyroscope data to
estimate the direction of the movements. In this context,
Pedestrian dead reckoning is a first straightforward approach.
It uses raw sensor data and an initial step length, to succes-
sively estimate the current position. Since this approach returns
locations that are not necessarily bound to an underlying
path, researchers use additional map matching algorithms
[8]. These algorithms limit the set of possible locations to
positions on a path, e.g. by determining the position with the
shortest distance. This compensates for possibly erroneous and
imprecise measurements. We base our approach on the same
idea.

CompAcc by Constandache et al. [9] provides an
infrastructure-less positioning service by matching walking
patterns onto path segments. The algorithm is based on the
assumption that the compass bearings of consecutive steps
correspond to the estimated directions on the path. They select
the most similar sequence within a sliding window to estimate
the position. CompAcc is developed for outdoor requirements
as they use a GPS-based fallback mechanism to reset the
system in erroneous states. However, we could replace this
type of fallback by a Wi-Fi Fingerprinting approach to meet
indoor requirements.

A third class of smartphone-based indoor algorithms also
uses the built-in camera to enable a positioning service. One
idea, shown in [10], is to perform feature training during an
offline phase. Nguyen and Lee developed their system on the
basis of periodically captured 360◦ panorama images. They
stored these information as well as the corresponding position
and compass orientation in a database. During the online phase
they extract features from camera captures and perform feature
matching on the basis of available data.

III. SYSTEM DESIGN

Figure 1 presents an overview of our system. First, we
obtain map material through OpenStreetMap, or create it using
tools readily available for OpenStreetMap, such as JOSM [11].
After a user marks her initial position (Section III-A), we load
a map of the vicinity of the user into memory.

Next, we detect the movement of the user using step
detection. If step detection is unavailable, e.g., because the
user uses a wheelchair, we extract motion vector information
from the camera of her smartphone, see Section III-B. From
this information, we infer a speed, and through this, pseudo-
steps which we combine with the heading information from
an integrated electronic compass.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

1

11
1

1
1

1

2.5

2.5

2.5

2

2

4

4

1

,51
1

1,5

,5

3

2

2

1

11
1

1
1

1

2.5

2.5

2.5

2

2

4

4

1

,51
1

1,5

,5

3

2

2

2

4

2

4
1

2

S 4

3

S

6

S

7

1

1

F
7

3

S

8

S

4 6

1

2
3

2'

4

5

3'

Fig. 1. Flow of information during navigation. (1) The application obtains
map material from OSM. (2) Using the inbuilt accelerometer, a mobile phone
detects steps. (3) The detected steps are combined with heading information
using the inbuilt magnetometer. Alternatively, (2’) the smartphone camera
records and compresses a video of the floor. Our system reads out the motion
vectors. (3’) The detected motion vectors are transformed into virtual steps
together with heading information from the magnetometer. (4) The detected
steps are mapped onto a map. (5) The base map provides the available
orientations and candidate paths. (6) The user gets feedback about the current
most probable position, based on the detected scores.

We then map these steps onto the map by following a
selection of candidate paths segments. The most likely position
is returned to the user, while the least likely candidate path
segments are discarded. In a following step, we create new
candidates, extending the current set around the most likely
current positions, see Section III-C.

A. Initial Position Selection

We identify three main categories of how a user chooses an
initial position: (1) Manually selecting a position on a screen,
either from a selection menu or by pointing on a map. This
is a fall back mechanism that will always work, but requires
the user to take an active role. (2) Automatically, e.g., using
the last available GPS position near an entrance to a building
or making use of sporadically available other means of local-
ization, such as Wi-Fi Fingerprinting or Bluetooth beacons. In
contrast to systems purely built on these mechanisms, we only
need coverage in very specific areas, such as, near common
entrance points. (3) Interactively, through interaction of our
system with the environment. The building administrator may
install additional guidance systems,e.g., electronic signposts,
at the entrance. When a user identifies her target, she scans
a QR code or an NFC tag, that encodes the destination, but
also the current position of the user. We implemented basic
versions of all three methods, but in the rest of this paper, we
assume that an initial position is available.

B. Flowpath – H.263 Motion Vectors for Speed Estimation

In our previous work [1], we showed the feasibility of
using the sensors integrated in current smartphones for indoor
navigation, using route matching algorithms. However, we
depended on step detection mechanisms, which limited its use
to pedestrians. To also enable wheelchair drivers to benefit
from such a system, we developed a method to detect the
movements of the user using the camera of the device, see
Figure 2.

Typically, modern smartphones have a digital camera which
allow you to record high definition video. Due to the complex-

Fig. 2. Using our navigation system on wheels. We attach the smartphone to
the wheelchair using a simple fixture. With the rear camera pointing towards
the ground, the user can still read the display easily, while the camera detects
the movement of the ground. No additional hardware is necessary, making
the system fast and easy to deploy.

ity of video compression standards, hardware manufacturers
include specialized hardware into these devices to enable real-
time processing of the video data. One of the computationally
expensive operations during the video compression process is
motion estimation. Instead of storing an entire picture for each
frame, current compression schemes reuse pieces of preceding
frames, and reference them in following frames instead of
storing their binary content again. Having this block movement
running on specialized hardware resources frees up the general
purpose core of the processor for other tasks, such as indoor
navigation.

We re-purpose the video compression: Instead of using the
motion estimation within a video codec for video compression,
we use it to estimate the speed of the user by detecting how
fast the ground passes through the field of view of the rear-
facing camera pointed towards the floor.

To obtain a measure of the optical flow from the camera,
we avoid processing the captured frames for motion estimation
ourselves, and retrieve the optical flow information from the
compressed video stream, instead. Since we are not actually
interested in recording the video stream itself, we stream the
video to memory, parse the motion information from it, and
discard the video data immediately. This way, we maintain the
efficiency of the hardware accelerated video compression.

1) Getting Motion Information out of the Camera: In the
following, we will go more into detail, on how to extract
this motion information from the video stream. Most video
and image compression schemes begin with splitting each
frame into small 8 by 8 pixel areas, so-called macro blocks.
Aside from finding an efficient way to compress these blocks
independently, such as the JPEG standard does, video codecs
make use of the correlation between different frames. When
the codec detects a macro block from a previous frame in its
current frame, it saves only the reference to this macro block.
This uses up significantly less memory than saving the whole
pixel content of that block.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Fig. 3. Visualization of motions vectors contained in a H.263 P-frame. Video
codecs typically use the motion of macro blocks to further compress the video
stream. Instead, we use them to predict the ego-motion of the camera.

In our system, we make use of H.263 [12] encoded video
data. A basic H.263 encoded video stream consists of two
frames types: Key frames (INTRA-frames or I-frames) and
predicted frames (P-frames). The I-frames contain a complete
picture, where the predicted frames consist of prediction in-
formation derived from the preceding frame. While recording,
the camera hardware performs motion estimation to create
a point of reference on the previous frame using a Motion
Estimation Processor (MEP). This information, the motion
vectors, is stored in horizontal and vertical components for
each macro block in the P-frames, see Figure 3. The design
of the basic H.263 motion vector encoding [12, p. 45] limits
their range to [−16, 15.5] for each component, giving subpixel
precision. Although there are further modes which allow for
a greater search area for motion vectors, current devices only
use the basic mode. This trades off compression efficiency for
processing speed.

Depending on the video resolution, the performance of our
H.263 parser uses little enough resources to allow further
evaluation of the motion vector data for estimating the user’s
current speed. Table I shows the speed of the H.263 parser,
implemented in Java for Android based devices, running on
a Google Nexus device. We chose a working resolution of
640× 480 pixels, as we are still able to parse the video
stream fast enough while the camera system still uses motion
estimation. We could use a higher resolution, but this would
require us to reduce the frame rate.

Additionally, through adjustment of the video quality set-
ting, we can force the encoder to produce more P-frames. More
P-frames and less I-frames would result in a lower perceived
quality when viewing the video. However, the MEP uses the
same raw data, independent of the chosen video quality setting.
Therefore, a lower setting actually results in more P-frames,
which we can use for our speed estimation.

2) Deriving the Speed from Camera Motion Information:
From the motion vector information obtained above, we built
a very simple but reliable classifier that we use for speed
estimation.By taking all motion vectors from a P-frame and

TABLE I
PERFORMANCE OF OUR JAVA ANDROID H.263 PARSER

Video Resolution Average time per frame Frames per second
640 × 480 13 ms 76.9

1280 × 720 44 ms 22.7
1920 × 1080 104 ms 9.6

measuring the distance between the 10 percentile P10% and
the 90 percentile P90% of the y-component of these vectors
averaged over a 2 s interval, we achieve a Pearson correlation
coefficient of > 0.8 between the ground truth speed and the
above-described distance. Choosing different cut-off values,
we classify the speed as:
• stop: The user is currently not moving.
• slow: The user is currently moving at around 0.75 m/s.
• fast: The user is currently moving at around 2.0 m/s.
Formally, we define the P̂ 2s

10%(t) as the moving average over
a 2 second interval of the 10th percentile of the motion vectors
in the frame at time t. P̂ 2s

90%(t) is defined accordingly. The
speed of the user is:

v(t) =

0.0m/s if P̂ 2s

90%(t)− P̂
2s
10%(t) ≤ C0

0.75m/s if C0 < P̂ 2s
90%(t)− P̂

2s
10%(t) ≤ C1

2.0m/s else
(1)

We can vary C0 and C1 with the height of the camera over
the ground. However, 1.5 and 4.0 respectively provided good
results, as shown in Section IV-A. Depending on the predicted
speed, we issue a virtual step, whenever another meter would
be traversed.

This allows us to use the exact same map matching algo-
rithm, that we are using with accelerometer detected steps, for
wheelchairs, without any further adaptation.

C. Matching Steps to Multiple Paths – MultiFit
We build on top of our previous algorithm BestFit [1],

where we have shown accurate results within indoor envi-
ronments. BestFit used a sequence alignment algorithm to
find an optimal matching between the sequence of measured
bearings, denoted by S and the directions on the path M . For
the calculation, we used an efficient dynamic programming
approach and defined a penalty matrix D, which favors the
alignments between map segments and detected steps in the
same direction and penalizes gaps and alignments between
map segments and detetected steps which are perpendicular
or in opposite directions:

D(i, j) = min
{

D(i− 1, j − 1) + score(M(i), S(i)),

D(i− 1, j) + score(M(i), S(j − 1)) + α, (2)
D(i, j − 1) + score(M(i− 1), S(j)) + α}

where D(0, 0) = 0, D(i, 0) = D(0, j) = ∞ for 1 ≤ i ≤
|M |, 1 ≤ j ≤ |S| and α = 1.5 is penalty gap used as a
weakening parameter.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Virtual Step

F

2 3

4

5

7

8

S

S FStart Finish

61
4.9 m (6) 6.8 m (9)

6.
4

m
 (8

)

5.3 m (7)

5.2 m (7)

3.0 m
 (4

)

6.5 m (8)

7.0 m (9)

4.6 m (6)

3.
5

m
 (

4)

6.
5

m
 (

8)

4.7 m (6)

Fig. 4. Discretized example graph. We see the real length of the edges
as well as the virtual edge lengths based on a step length of lstep = 0.8m.
Note, that in this example graph, the shortest path follows S-1-6-F. Alternative
paths like S-4-7-F are also possible. Therefore, a navigation system needs to
consider these alternatives in parallel.

We parameterized and evaluated the associated scoring
function as:

score(α, β) =

0.0, if](α, β) ≤ 45◦

1.0, if 45◦ <](α, β) ≤ 90◦

2.0, if 90◦ <](α, β) ≤ 120◦

10.0, else

(3)

Now, we extend BestFit to follow multiple paths. In this
extension, our key idea is to consider several paths in parallel
and share information in a specialized data structure—the
penalty tree. For this, we first have to normalize the edges
of our navigation graph. To this purpose, we split all edges of
the original graph into a number of virtual steps, based on the
step length of the user. The splits slightly change the length
of an edge to a new virtual length of an edge, as we round to
the nearest integer.

Definition 1 (Virtual Edge Length): Let Gmap = (V,E) be
an undirected graph representing the map with nodes V =
{n1, n2, ..., nm} and edges E = {e1, e2, ..., en} where ei ∈
V × V . Let further l(e) be the length of an edge. Then, we
calculate ∀e ∈ E the virtual edge length l̃(e) as:

l̃(e) = max{1, b l(e)
lstep
e}

A virtual step corresponds to one discretized unit on a partic-
ular edge.

We illustrate the edge splitting process, the original and
virtual lengths in Figure 4. Virtual steps form the basis for
the calculations within our system. Now, remember that our
original approach fills a penalty matrix, following a dynamic
programming approach. By applying the above virtual step
simplification, we can divide this penalty matrix into smaller
chunks, partial penalty matrices, with the number of rows
corresponding directly to the virtual length of the represented
edges:

Definition 2 (Partial Penalty Matrix): Let M (e) =
M (e)(i), 1 ≤ i ≤ l̃(e) be the direction of an edge e, S the set
of measured compass bearings and S(j) the measured value
for step j. Then, a given path p = (e1, e2, . . . , ek), has the
following penalty matrix:

D(p)(i, j) = D(e0)(i, j) // D(e1)(i, j) // · · · // D(ek)(i, j)

where // is the vertical matrix concatenation operator,
D(e0)(i, j) := ~dT0 is a constant vector with

~dT0 (j) =

{
0 if j = 0

∞ else

and

D(el)(i, j) = min
{

D(el)(i− 1, j − 1) + score(M (el)(i), S(j)),

D(el)(i− 1, j) + score(M (el)(i), S(j − 1)) + α,

D(el)(i, j − 1) + score(M (el)(i− 1), S(j)) + α}
for 1 ≤ l ≤ k , 1 ≤ i ≤ l̃(el) and 1 ≤ j ≤ |S|, where

D(el)(0, j) := D(el−1)(l̃(el−1), j) and M (el)(0) := M (el−1).
Finally, we set D(el)(i, 0) :=∞ 1 < i ≤ l̃(el).

Then we call D(el)(i, j) the Partial Penalty Matrix of
edge el.

Since different candidate paths may share the same prefix,
this technique allows us to efficiently share information, as
penalties only propagate away from the route, see also Fig-
ure 5. At the same time this lessens the space and runtime
requirements of this scheme.

1) Initialization: We initialize the penalty tree with an
empty root node. In the next step we expand the tree at all leafs
by a predefined horizon h, a minimum number of steps that
a user can perform, before we need to expand the tree again.
In the beginning, there is only one leaf node, the root. This is
also the initial starting position, we discussed in Section III-A.

2) Expansion: We expand the current set of candidate
paths, i.e., the leafs of the penalty tree, along all connected
edges, until we extended them to the horizon h. Instead of
duplicating the current partial penalty matrix of the previous
segments in this expansion, we add the edges into our penalty
tree structure. For each given inserted edge, we append a
partial penalty matrix to the particular node.

As seen in Figure 5, we can follow the leafs of the penalty
tree back to the root, thus span the complete path of all
possible routes, up to a given point in time. A partial penalty
matrix only refers to the segment defined by the corresponding
edge in the navigation graph but depends on the calculation
of the preceding matrices towards the root of the tree. This
property is a direct consequence of the dynamic programming
approach of BestFit. When a step is detected, we start the new
penalty calculations at the root node and traverse the tree using
a breadth-first search. As a side-effect, we avoid calculating the

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

S

1

NId
Min

s

S

0

NId
Min
s

S

0.0
1

1

4

7
6.4 m

3
15.2 m

S
14.7 m

6
6.8 m

S
14.7 m

NId
Min
s

1.0
1

S 4

NId
Min
s

4.0
1

S 2

NId
Min
s

0.0
1

S 1

NId
Min
s

0.0
1

S 1

NId
Min
s

1.0
1

S 4

NId
Min
s

1.0
1

S 4

2
19.8 m

Fig. 5. Second iteration of the MultiFit example graph. At the beginning,
MultiFit expanded the path to a horizon of at least 8 steps. The data packets
are compared, updated and passed along the nodes using a breadth-first search.
In the end, all leaf nodes have the referenced packet, that encodes the current
position with the minimum penalty for their candidate path (marked by red
squares). In this example, the pruning scheme ReSD keeps only the best
4 paths and prunes the remaining candidate paths. Since we only identify
one leaf segment with a minimum penalty of 4, which is higher than all the
other minimum penalties, we need an additional criterion to remove candidate
leafs. In this case, ReSD removes the path with the longest distance to the
destination.

same prefix multiple times, since paths with the same prefix
share exactly the same information regarding prefix specific
penalties.

3) Position Estimation: To estimate the current location
we traverse the penalty tree breadth-first from the root. As
we pass a node, we look for the minimum penalty in the
associated partial penalty matrix. For each node, we then store
the position of the minimum penalty within the prefix leading
to this node and its partial penalty matrix as the best position
estimate and minimum for this segment. As we continue
towards the leafs, we follow the complete set of candidate

paths and identify the overall minimum, which we return as
the best position, formally:

Let p = (e1, e2, · · · , ek) be a path and D(p)(i, j) the
associated penalty matrix as in Definition 2. Let further j be
the current step, then we get the estimated position on path p
by calculating the edge and step indices as follows:

pos(p) := ip, lp = argmin
1≤l≤k

1≤i≤l̃(el)

{D(el)(i, j)}

Then, the estimated position on p is located at edge elp on
step index ip.

To estimate the position for the system, we search the mini-
mal penalty of all monitored paths and return the path-specific
position estimation. Thus, for a set P = {p1, p2, · · · , ps} let
p∗ ∈ P be the path with the absolute minimal penalty, then
by determining pos(p∗) = ip∗ , lp∗ we can estimate the user’s
position at edge elp∗ on step index ip∗ .

4) Pruning – ReSD: We sort the candidate leafs according
to their associated minimum penalty. This has two reasons: (1)
Identify the best current position estimate, see above. (2) As
the tree is expanded further and further, it grows exponentially.
Each node has at least two attached edges: The forward path
and the backward path, in case a user turns around. Thus, we
need to prune the penalty tree to not run into the problem of
exponential runtime.

Therefore, we set a constant maximum number of candidate
paths cmax we want to consider. We dispense of the candidate
paths with the highest minimum penalty. These are the least
likely to contain the user’s current position. As several leafs
may share the same minimum penalty, we then order the
remaining candidate paths by distance of their reported most
likely position to the destination of the user. Finally, as leafs
with the same prefix may share also the returned position,
we order the remaining candidates by the distance of the
destination to the leaf node, the end of the currently considered
candidate path. Thus, we call this heuristic Reduction by Score
and Distance (ReSD).

Let P = (p1, p2, · · · , pcmax−1 , pcmax , pcmax+1 , · · · , pm) be
the sequence of observed paths before the pruning step,
ordered as defined above. For a path p = e1, e2, · · · , ek =
n0, n1, · · · , nk we write l(p) := k. Then, for any path
pl = (n

(l)
0 , n

(l)
1 , · · · , n(l)l(pl)

), cmax < l ≤ m to be pruned from
penalty tree, we search a maximal index i′ with ∃k, 1 ≤ k ≤
cmax : pk = (n

(k)
0 , n

(k)
1 , · · · , n(k)i′−1, n

(k)
i′ , n

(k)
i′+1, · · ·n

(k)
l(pk)

)
where

n
(l)
j = n

(k)
j ∀0 ≤ j ≤ i′ and n(l)i′ 6= n

(k)
i′

Then, to prune the path pl from the penalty tree, we remove
the nodes nj , i′ < j ≤ l(pl).

IV. EVALUATION

We conducted three sets of experiments to investigate the
accuracy and usability of our system: (1) An outdoor exper-
iment using GPS speed as the ground truth to evaluate the
accuracy of the Motion Vector based speed estimation. (2) An

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

stop

slow

fast

stop
slow
fast

0 20 40 60 80 100 120 140
time [s]

0

2

4

6

8

10

m
ot

io
n

ve
ct

or
 [p

ix
el

]

motion vector metric
gps speed

0

2

4

6

8

10

sp
ee

d
[m

/s
]

Speed and Motion Vector Metric over Time

Fig. 6. Time series of GPS speed used as ground truth and the motion
vector based predictor. We see that the predictor closely follows the ground
truth, ignoring the scaling for now. There is a discrepancy around time 110 s.
At this point we turned around while standing still. As expected, the GPS
speed remains 0, while the motion vectors detect movement.

indoor experiment, to verify the usability of Motion Vector
based pseudo-steps in indoor environment. (3) An outdoor
experiment on a parking lot simulating a complex building
to test the accuracy of our MultiFit map matching scheme.

A. Speed Estimation – Flowpath Accuracy

In order for us to test the accuracy of the speed estimation,
we conducted a set of outdoor experiments. This allows us
to make use of GPS based speed measurements as a ground
truth. GPS measures the speed directly and not as the distance
between two GPS fixes. Therefore, we can use GPS as an
appropriate ground truth for calibrating our motion vector
based system.

Figure 6 presents an example run of the speed measurement
and the

∣∣∣P̂ 2s
90%(t)− P̂

2s
10%(t)

∣∣∣ distance we presented in Section
III-B2 over time. The predictor closely follows the ground
truth, with only minor variations.

To further investigate the predictor, we plotted the density
of the samples for a given GPS speed and predictor value, see
Figure 7. We can observe, that these two quantities are strongly
correlated. The Pearson correlation coefficient, between the
two quantities is 0.84. This is a very strong correlation,
meaning, that our predictor is indeed useful for pedestrian and
wheelchair speeds.

B. Indoor Feasibility of Motion Vector based Speed Detection

As we performed the previous experiment in an outdoor
setting, on a concrete parking lot, we now need to show that
these results are also applicable in an indoor environment. We
rented a wheelchair from a local shop and did experiments
in the corridor of our department, as well as in a trade fair
environment. We also attached a smartphone with our system
running to a SegWay personal transporter and to a bicycle,
which we pushed.

Fig. 7. Correlation between the GPS speed used as ground truth and the
motion vector based predictor. Please note that we masked the fields where
less than 5 samples were recorded for the sake of visibility. We see, that
the two quantities are indeed strongly correlated. Their correlation coefficient
is 0.84. Our motion vector based predictor is therefore a good predictor for
pedestrian and wheelchair speeds.

We made the following observations:
• Linoleum, marble, and wooden floors: This floor type

has a very structured surface, which makes it particularly
well suited for motion vector based speed estimation.
The system performed well in combination with our map
matching system.

• Unicolored Carpet floors: This floor type has less
structure. However, as this type is prone to dirt and
variations caused by people’s foot steps, our system was
still usable.

• Highly reflective floors: This floor type is problematic,
as there are few distinct features that the video compres-
sion algorithm can pick up. However, the lines between
tiles, as well as the walls on the side of the field of
view cause variation. Still, this was the setting where our
approach was least reliable.

C. MultiFit Evaluation

We set up a test environment behind the buildings for
computer science at RWTH Aachen University, to evaluate
the accuracy and the robustness of MultiFit. We designed our
test map to resemble a typical complex building structure with
long floors and perpendicular branches. For our experiments,
we had 11 participants. Each followed the same default run,
which consists of 14 nodes and has a total length of 218.24 m.
To determine ground truth reference positions, we measured
the exact time, when a participant passed a node. Figure 8
illustrate the exact dimensions of our test environment and
the route of the default run.

To evaluate the accuracy of our step detection algorithm,
we count the number of steps that have been made on the first

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

45.7 m

8,5 m

24.2 m

3.4 m

15.2 m

47.6 m

18.2 m

17.2 m

18.4 m

18.4 m

9.2 m
18.2 m

Destination

Start

Default Path

8.0 m

12.5 m
9.0 m

15,0 m

43.7 m

23.2 m

21.9 m

6.
6

m
11

.7
 m

17
.1

 m

17
.9

 m

S

1

2

3

4

6

5
7

8

9

10

11

D

8,5 m

Fig. 8. Dimensions of the evaluation map. The highlighted default route
has a total length of 218.24 m and includes long straight stretches (S-1-2:
62.8 m), as well as short stretches, where the user turns around (5-6-5:17 m).
We included these features, so that the course closely resembles actual paths
through complex buildings.

two segments. The comparison between the values gave a step
detection error of estep = −8.1%, i.e. the algorithm made one
erroneous detection per 13 steps on average.

To get a first impression of MultiFit’s localization character-
istics, we consider the positions on the path that the algorithm
returned during the run. The optimal algorithm would return
each position on the path exactly once. Figure 9 shows the path
estimation coverage of MultiFit. To measure a reliable value
for the accuracy of MultiFit, we use the ground truth references
at the nodes. For each node, we calculate the average error
between the position estimations returned by the algorithm
and the ground truth reported by the participants, formally:

Definition 3 (Average Timed Location Error (ATLE)):
Let S = S1, ..., Sn be a set of samples, where

Si = {(ϕ(i)
t , ϕ̃

(i)
t)|1 ≤ t ≤ T}

and ϕ
(i)
t = (ϕ

(i)
lat,t, ϕ

(i)
lon,t) is the geographic position at time

t. Then we define the average timed location error as:

εATLE(t) =

∑
1≤i≤n

dist(ϕ
(i)
t , ϕ̃

(i)
t)

|S|
The ATLE is the average location error at a particular node

on the basis of a set of samples. As illustrated in Figure 10,
MultiFit shows stable values around the mean and without a
tendency of increasing errors. Moreover, since this algorithm
benefits from characteristic map patterns, we can identify an
error resetting mechanism resulting in an ATLE close to 0.

To measure the error for a specific participant, we use the
commonly used average location error along all passed nodes:

Path Coverage for default run

Fig. 9. Estimated positions of the default run. A thicker line describes
positions that the algorithm returned as a result. In contrast, thinner regions
are positions, not determined by MultiFit. We see that almost all positions
are uniformly covered with only very short interruptions. This already hints
at the mapping being accurate and few jumps in the reported positions.

Definition 4 (Average Location Error (ALE)): Let S =
{S(t)|0 ≤ t ≤ T} be a set of samples, where

S(t) = ϕ̃t = (ϕ̃lat,t, ϕ̃lon,t) 0 ≤ t ≤ T

Then we define the average location error εALE as:

εALE =

∑
0≤t≤T

dist(ϕt − ϕ̃t)

T

While the ATLE enables a long term view and exposes
tendencies of error propagation, the ALE gives us a more user-
specific value for the accuracy of a particular run. We illustrate
the values for MultiFit in Figure 11. With an average ALE of
less than 3 m and a maximum ALE of 5 m, we see that all test
runs produced accurate and usable results.

Finally, we investigate MultiFit’s behavior with respect to
usability in a navigation application. The algorithm performs
calculations and provides estimations for each detected step.
Stable algorithms are less likely to return consecutive positions
that exceed the expected distance of the step length itself.
Figure 12 shows the deviations of consecutive estimation
distances from the step length of the participant. The variations
between reported positions should be within 1 m, meaning
the reported position should not jump. MultiFit behaves quite
stable with respect to its position estimates, as seen in this
exemplary run.

However, consecutive steps are an indication for the stability
of MultiFit regarding specific runs, but are not enough to
describe the robustness of the algorithm. In order to achieve
this, we define the Consecutive Stability which provides us
with a concrete value for the stability of the position estimates
of an algorithm:

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

3 4 5 6 8 9 10 1152 7 DS 1

Location on Path [m]

A
v
e
ra

g
e
 T

im
e
d

 L
o
ca

ti
o
n

 E
rr

o
r

[m
]

Average Timed Location Error for the default run

Fig. 10. Node-specific average timed location error and the standard
deviations for the default run. The values do not increase during the run
and reach a minimum of 0.93 m at node 6. The mean value regarding all
nodes is εATLE = 2.7m.

Definition 5 (Consecutive Stability): Let S = {S(t)|0 ≤
t ≤ T} be a set of samples, where

S(t) = ϕ̃t = (ϕ̃lat,t, ϕ̃lon,t) 0 ≤ t ≤ T

is the sampled estimated geographic position at time t and
l̃ the estimated step length. Then we define the consecutive
stability σT as:

σT =

√√√√ ∑
1≤t≤T

|dist(ϕ̃t − ϕ̃t−1)− l̃|

T

The consecutive stability is the standard deviation of the
differences between consecutive estimation distances and the
step length. Using this value, we can express how the al-
gorithm behaves in the context of a tracking or navigation
application, i.e., if it would tend to make smooth position
updates rather than to jump over large distances. The standard
deviation has the property of strengthening the influences of
outliers with high absolute values by exponentiation. Thus, we
avoid classifying algorithms as stable when they jump across
long distances in consecutive estimations. Figure 13 shows the
values for the consecutive stability when using MultiFit. We
see that MultiFit’s results are stable, with a mean of 0.52 m.

Aside from the default run, we also ran several free run
experiments, where we did not ask the participants to follow a
specific path. Accordingly, the participants took arbitrary paths
through the experiment area. While we do not report on the
results here in detail because of space restrictions, they were
comparable to the default run results. The average location
error was 4.0 m and the consecutive stability was 0.64 m across
all free runs.

V. DISCUSSION

The previous evaluation showed that our system is well
suited for indoor environments. To our knowledge, we are the
first, to present a smartphone-based system, that can predict
the current ego-motion through the use of optical flow without
requiring additional hardware, that is fast enough to also allow
navigation in a building.

While the use of additional hardware on a wheelchair is not
as prohibitive, as for typical pedestrian walkers, we believe,
that this requirement still has its benefits, as we could easily

Fig. 11. User-specific average location error and the standard deviations
for the default run. Run 1, 3, 6 and 7 show results below 2 m when using
MultiFit. The average ALE is below 3 m.

give navigation systems to wheelchair bound visitor at an
entrance to a public building or similar scenarios.

Our approach works completely self-contained. No network
connection is needed, as current smartphones are capable to
perform all the necessary computations locally.

We can lift the limitations imposed on us by using the H.263
video codec by implementing additional, more complex video
decoders, such as H.264. We do not need to implement them
in full, as we do not reassemble actual pictures from the video
data. Hu et al. [4] have worked into a similar direction, but do
not provide an estimation of speed for the movements of the
camera itself, but give measurements of detected speeds from
passing cars from the motion vectors.

The following table presents a summary of optical flow
based methods using additional hardware:

TABLE II
FLOWPATH VS. USING ADDITIONAL HARDWARE

Feature Flowpath Hu et al. [4] Optical velocity sensor [3]
Smartphone-based X − −

additional hardware
Speed Estimation X X

(of cars)
X

Realtime X X
(only low res)

X

Using existing libraries to obtain a measure of optical flow
is still too computationally complex for today’s smartphones.
Accordingly, using our shortcut via the video codec seems to
be the only way, currently feasible, see the following table:

TABLE III
FLOWPATH VS. OTHER SOFTWARE-BASED SOLUTIONS

Feature Flowpath openCV [5] Luxenburger et al. [6]
Smartphone-based X X X

Speed Estimation X − −
Realtime X

(only low res)
−

(1 frame / sec)
X

Similarly, matching steps to multiple path directly on an
embedded device is a problem, that few researchers tackled
in detail. We extended our previous BestFit algorithm to
investigate several dynamically created candidate paths in
parallel. We maintain the error resetting properties as well as
the computational feasibility, while extending it, to allow the
user to turn around and deviate from her route.

2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Consecutive steps: test 7 default run

Step Number
0 50 100 150 200 250 300

D
e
v
ia

ti
o
n
s

o
f

co
n

se
cu

ti
v
e
 s

te
p

s
[m

]

0.8

0.4

0.0

–0.4

–0.8

Fig. 12. Exemplary visualization of deviations between consecutive step
estimations and the step length. The optimal algorithm would return location
estimates with consecutive distances corresponding to the underlying step
length. All resulting jumps are within one meter distance.

Previous approaches either depend on additional infrastruc-
ture such as Wi-Fi or GPS reception to reset the current
position. Step detection based systems, have very limited error
resetting capabilities, as summarized in the following table:

TABLE IV
MULTIFIT VS. OTHER LOCALIZATION SCHEMES

Feature CompAcc [13] PDR + Map Matching [8] BestFit [1] MultiFit
Indoor − X X X

Outdoor X X X X

Smart phone adaption X X X X

Infrastructure-less X X X X

Multipath approach X X − X

Error Resetting X
(GPS fallback)

− (X)
(only along a route)

X

We will make the source code of our work available
under an open source license at https://github.com/COMSYS/
FootPath for other researchers to reuse and improve upon.

A. Future Work

We do not yet benefit from additional infrastructure being
available. We could extend the system to additionally take Wi-
Fi Fingerprinting based position updates into account to further
boost the likelihood of specific candidate positions. This would
further improve both schemes through enhancing the stability
and accuracy of predictions, while at the same time help the
fingerprinting approach to take additional samples, in areas
not yet covered adequately.

Finally, building a mechanism to locally distribute maps,
e.g. through the use of specially prepared access points at
an entrance area or local map sharing between mobile users
can further help users find their way in unknown indoor and
outdoor environments.

VI. CONCLUSION

We presented our approach for a self-contained map-based
indoor navigation system for wheelchair users and pedestrians
and demonstrated its feasibility in terms of indoor localization
accuracy.

We introduced an optical flow based speed estimation
system making use of the specialized hardware acceleration
of current smartphones for video encoding, fast enough to be
combined with other navigation schemes. As we do no longer
depend on step detection, we can provide indoor navigation
support for a variety of indoor personal transportation devices,
such as wheelchairs and SegWays.

Fig. 13. User-specific consecutive stabilities of the default run. On the one
hand, we can identify one outlier, run 4, with a three times lower stability
than the mean of 0.52 m. On the other hand, we see a high level of robustness
for the remaining runs, in particular for run 3, 6 and 7 with a deviation of
less than 0.2 m.

Furthermore, we showed, that our multipath extension to
our map matching scheme reliably reports user positions in
indoor environments. This scheme is easy to implement and
has only minimal memory requirements, making it appropriate
for smartphones and other highly embedded devices.

ACKNOWLEDGMENT

This research was funded in part by the DFG Cluster of
Excellence on Ultra-high Speed Information and Communica-
tion (UMIC), German Research Foundation grant DFG EXC
89. REFERENCES

[1] J. A. Bitsch Link, P. Smith, N. Viol, and K. Wehrle, “FootPath: Accurate
Map-based Indoor Navigation Using Smartphones,” in Indoor Position-
ing and Indoor Navigation (IPIN), 2011 International Conference on,
2011.

[2] OpenStreetMap community, “OpenStreetMap, The Free Wiki World
Map,” March 2011. [Online]. Available: http://www.openstreetmap.org/

[3] Kistler. Kistler optical sensors. [Online]. Available: http://www.
corrsys-datron.com/optical sensors.htm

[4] F. Hu, H. Sahli, X. Dong, and J. Wang, “A high efficient system for traffic
mean speed estimation from mpeg video,” in Artificial Intelligence and
Computational Intelligence, 2009. AICI’09. International Conference
on, vol. 3. IEEE, 2009, pp. 444–448.

[5] OpenCV. Open source computer vision. [Online]. Available: http:
//opencv.org/

[6] A. Luxenburger, H. Zimmer, P. Gwosdek, and J. Weickert, “Fast pde-
based image analysis in your pocket,” Scale Space and Variational
Methods in Computer Vision, pp. 544–555, 2012.

[7] E. Martin, O. Vinyals, G. Friedland, and R. Bajcsy, “Precise indoor
localization using smart phones,” in Proceedings of the international
conference on Multimedia. ACM, 2010, pp. 787–790.

[8] S. Shin, C. Park, and S. Choi, “New map-matching algorithm using
virtual track for pedestrian dead reckoning,” ETRI journal, vol. 32, no. 6,
pp. 891–900, 2010.

[9] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in INFOCOM, 2010 Proceedings
IEEE. IEEE, 2010, pp. 1–9.

[10] J. Lee et al., “Self-positioning system for indoor navigation on mobile
phones,” in Consumer Electronics (ICCE), 2012 IEEE International
Conference on. IEEE, 2012, pp. 114–115.

[11] I. Scholz and OpenStreetMap community, “Java OpenStreetMap
Editor,” March 2011. [Online]. Available: http://josm.openstreetmap.de/

[12] ITU-T Recommendation H.263: Infrastructure of audiovisual services
Coding of moving video, International Telecommunication Union Std.
H.263, January 2005.

[13] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone
localization without war-driving,” in INFOCOM, 2010 Proceedings
IEEE, 2010, pp. 1 –9.

https://github.com/COMSYS/FootPath
https://github.com/COMSYS/FootPath
http://www.openstreetmap.org/
http://www.corrsys-datron.com/optical_sensors.htm
http://www.corrsys-datron.com/optical_sensors.htm
http://opencv.org/
http://opencv.org/
http://josm.openstreetmap.de/

	Introduction
	Contributions

	Related Work
	Using Optical Flow for Speed Estimation
	Smartphone-based Indoor Navigation Systems

	System Design
	Initial Position Selection
	Flowpath – H.263 Motion Vectors for Speed Estimation
	Getting Motion Information out of the Camera
	Deriving the Speed from Camera Motion Information

	Matching Steps to Multiple Paths – MultiFit
	Initialization
	Expansion
	Position Estimation
	Pruning – ReSD

	Evaluation
	Speed Estimation – Flowpath Accuracy
	Indoor Feasibility of Motion Vector based Speed Detection
	MultiFit Evaluation

	Discussion
	Future Work

	Conclusion
	References

