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Abstract—Indoor localization at minimal deployment effort
and with low costs is relevant for many ambient intelligence
and mobile computing applications. This paper presents Ac-
tionSLAM, a novel approach to Simultaneous Localization And
Mapping (SLAM) for pedestrian indoor tracking that makes use
of body-mounted sensors. ActionSLAM iteratively builds a map
of the environment and localizes the user within this map. A foot-
mounted Inertial Measurement Unit (IMU) keeps track of the
user’s path, while observations of location-related actions (e.g.
door-opening or sitting on a chair) are used to compensate for
drift error accumulation in a particle filter framework. Loc ation-
related actions are recognizable from body-mounted IMUs that
are often used in ambient-assisted living scenarios for context
awareness. Thus localization relies only on on-body sensing and
requires no ambient infrastructure such as Wi-Fi access points
or radio beacons.

We characterize ActionSLAM on a dataset of 1.69km walking
in three rooms and involving 241 location-related actions.For
the experimental dataset, the algorithm robustly tracked the
subject with mean error of 1.2m. The simultaneously built map
reflects the building layout and positions landmarks with a mean
error of 0.5m. These results were achieved with a simulated
action recognition system consisting of an IMU attached to the
wrist of a user and a smartphone in his pocket. We found
that employing more complex action recognition is not beneficial
for ActionSLAM performance. Our findings are supported by
evaluations in synthetic environments through simulationof IMU
signals for walks in typical home scenarios.

I. I NTRODUCTION

Activity monitoring is commonly used for context-aware
home assistance, rehabilitation, or implicit energy manage-
ment applications ([1], [2], [3]). Besides activities, theuser’s
location is a relevant source of context information in such
scenarios [4]. For example by fusing location information to
fall detection systems such as the Android application iFall
[5], one could objectively create hazard maps, showing areas
of frequent falls at home.

In order to minimize costs, decrease deployment effort, and
increase user acceptance, it is interesting to avoid location
tracking systems that require modifications of the environment,
prior expert calibration, or prior maps of the indoor surround-
ings. This is particularly beneficial for location trackingin
private homes and for location-aware consumer wearables.

Simultaneous localization and mapping is an algorithmic
framework that can address this by allowing for iterative,
autonomous map building of previously unknown environ-

ments and localization of a subject within this environment[6].
SLAM combines proprioceptive sensors for keeping track of
the subject’s motion, and exteroceptive sensors for observing
landmarks in the environment. A key characteristic of SLAM
implementations is the modality of the landmarks identified
by the exteroceptive sensors. The choice of an appropriate
sensor setup for landmark recognition influences both, tracking
accuracy and usability of the system.

In this work we proposeActionSLAM, a SLAM imple-
mentation for pedestrian tracking whose novelty is to use
location-related actions as landmarks. A single foot-mounted
IMU is applied for proprioceptive motion sensing, together
with an action recognition system for landmark observations.
Location-related actions are body movements that only occur
at specific locations in the environment. For example, the
door-opening action is always executed close to doors, simply
because it can only be executed when a door is in reach.
Research in activity and gesture recognition showed that it
is possible to identify such actions by applying machine
learning techniques for classification of motion sensor readings
[7]. Examples include recognizing “door opening” from a
wrist-worn IMU ([8], [9]), or “sitting down on a chair”
from a waist-mounted accelerometer [10]. In daily life at
home, location-related actions occur frequently with respect
to distance traveled (e.g. a person stands up from his chair,
opens the door, walks to the kitchen to open the fridge, takes
out food, walks back to the living room, closes the door,
and sits down again). ActionSLAM is an instantiation of the
FastSLAM algorithmic framework [11] adapted to handle the
characteristics of action landmarks while being robust towards
action recognition errors.

We evaluated ActionSLAM in an experiment simulating
daily life at home that included1.69km of walking and
performing 241 location-related actions. ActionSLAM was
capable of mapping the experimental area with a mean error
in landmark positioning of less than0.5m and tracked the
user’s position with mean error of1.2m. Furthermore, we
applied ActionSLAM to synthetic motion data of performing
daily routines in four different buildings and found similar
results as for the real dataset. Our analysis showed that an
unobtrusive action recognition system consisting of a wrist-
attached motion sensor and a smartphone may be sufficient
for reliable mapping and localization at home.
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II. BACKGROUND

A. Indoor Localization

The state-of-the-art approach to indoor localization of
pedestrians is radio-frequency (RF) fingerprinting, either using
Wi-Fi or GSM [12]. RF fingerprinting is a two-stage process:
In an offline mapping phase, fingerprints are recorded at
known positions to build a prior map. Then, in the online
localization phase, RF signal strengths are measured and
compared to the fingerprints in the pre-recorded map. The
effort of building and maintaining a prior map is acceptablein
public indoor environments with many users of a single map,
but a drawback for deployment in private scenarios, where a
map is only used by one or few people.

A set of tracking methods known as Pedestrian Dead
Reckoning (PDR) does not require prior mapping and is
therefore suitable for exploration tasks in previously unknown
environments. In PDR, position is inferred from wearable
motion sensors. The highest accuracy reported in literature is
reached with foot-mounted inertial measurement units and so-
called Zero-Velocity Updates (ZUPT-PDR). The observation
of having the foot on the ground and therefore velocity zero
is used to compensate for error accumulation when integrating
the IMU acceleration and rotational velocity measurementsto
position ([13], [14]). An alternative is to combine step detec-
tion and heading estimation from body-attached smartphones
to infer the user’s path [15]. All PDR methods suffer from
error accumulation with time and are therefore not intended
for long-term pedestrian tracking.

B. SLAM

SLAM combines odometry measurements (in human track-
ing typically PDR) with exteroceptive sensing to simulta-
neously estimate a mobile agent’s posest (location xt =
{sxt , s

y
t } and headingsφt ) and build a spatial mapΘ of his

environment [6]. SLAM was originally introduced in robotics,
but recently implementations for human tracking were pre-
sented (see Section II-C). The goal in SLAM is to find the
poseŝt and mapΘ̂ that maximize the following probability
density function:

p(st,Θ|ut, zt, nt) (1)

At time t, the proprioceptive sensors of the SLAM system
provide a motion update measurementut, with ut = u1, . . . ut

being the history of measurments. At the same time, landmarks
in the environment are observed.zt is a measurement of the
landmark’s position relative to the current user position.nt is
the identifier of the landmark observed at timet (in general,
multiple landmarks may be observed at a time).zt = z1, . . . zt
is the history of landmark position observations, andnt =
n1, . . . nt the history of landmark identifications.

The probability density functionp(st,Θ|ut, zt, nt) can be
estimated by means of an extended Kalman filter (EKF) and
two independent models for position updatep(st|ut, st−1) and
observation updatep(zt|st, θnt

, nt). θnt
is the location of the

landmarknt observed at timet. This approach is known as

EKF-SLAM. It has been successfully applied in many robotics
applications, e.g. [16].

An alternative is to estimate the posterior over all paths
st = s1, . . . , st instead of just the current posesst. The
resulting algorithmic framework is known as FastSLAM [11],
with a detailed discussion given by Thrun et al. in [17]. This
framework can be instantiated to various kinds of motion and
landmark sensing modalities by providing appropriate error
modelsp(st|st−1, ut) and p(zt|st,Θ). We use the notations
of [17] throughout this work. Estimating the posterior overall
paths enables the following factorization:

p(st,Θ|zt, ut, nt) = p(st|zt, ut, nt)

NL
∏

n=1

p(θn|s
t, zt, nt) (2)

In this way, the SLAM problem is decomposed into seperate
estimators for the person’s pathst and each of theNL

landmark locations. In FastSLAM, the path probability den-
sity function p(st|zt, ut, nt) is calculated by a particle filter,
while theNL landmark location probability density functions
p(θn|s

t, zt, nt) are estimated with EKFs. Since the landmark
locations are conditioned on the person’s path, each particle
(indexed with [m]) must maintain its own set of landmarks
Θ[m] together with the current path estimationst,[m].

A difficulty that often arises in SLAM is to uniquely
associate observations to a landmark: In practice, the landmark
identifier nt is often not known or uncertain since multi-
ple landmarks may look identical. In EKF-SLAM, only the
most likely data association hypothesis is tracked - if this
association is incorrect, EKF-SLAM often fails to converge.
FastSLAM has multiple advantages over EKF-SLAM such as
lower computational requirements and the capability of coping
with non-linear motion models. However, the key advantage
is that FastSLAM is capable of multi-hypothesis tracking.
The particle filter of FastSLAM can draw samples following
multiple hypotheses and filters out incorrect data associations
at a later stage, when more observations are available [18].

C. Landmarks in pedestrian SLAM

Both EKF-SLAM and FastSLAM have been applied to
human indoor tracking, making use of different exteroceptive
sensing modalities. In Table I a selection of published work
on SLAM applied to human indoor tracking is presented and
differences in terms of position update strategy, landmarktype
and algorithmic framework are listed.

So far, visual and Wi-Fi landmarks have been applied in
pedestrian SLAM. FootSLAM [23] and WiSLAM [25] do not
use landmarks in the map representation, but instead count
transitions between hexagonal map elements, assuming that
some areas of the environment are traversed in only one
direction and its opposite (e.g. floors). Computational require-
ments and obtrusive sensor placement are major limitationsof
visual landmarks for use in daily life [19]. Wi-Fi landmarks
are computationally much more lightweight and offer room-
level tracking accuracy if sufficient Wi-Fi coverage is available
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TABLE I
PEDESTRIANSLAM IMPLEMENTATIONS

Researchers PDR Method (Sensor) Observation (Sensor) Algorithmic framework Evaluation results
Pradeep et al. [19] Stereo vision odometry

(stereocam)
Visual object recognition
(stereocam)

FastSLAM High-accuracy tracking, large com-
putational and storage require-
ments

Ferris et al. [20] Probabilistic motion model
(no sensor)

Wi-Fi landmarks (Wi-Fi
radio)

Gaussian process latent
variable model (offline)

Mean error of4m in offline anal-
ysis

Shin et al.: SMARTSLAM
[21], [22]

Step counting and heading
determination (smartphone
in pocket)

Wi-Fi landmarks (Wi-Fi
radio)

FastSLAM Mean error of3m for a smartphone
implementation

Robertson et al.: FOOT-
SLAM [23], [24]

ZUPT-PDR (foot-mounted
IMU)

Walking patterns (foot-
mounted IMU)

Particle filter (similar to
FastSLAM)

Mean error of 2m, but requires
a desktop computer for real-time
execution

Bruno and Robertson:
WISLAM [25]

ZUPT-PDR (foot-mounted
IMU)

Walking patterns and
Wi-Fi (foot-mounted IMU
and Wi-Fi radio)

Particle filter (similar to
FastSLAM)

Increased robustness of FootSLAM

[22]. Providing maps and simultaneous localization with in-
room accuracy on a low-power wearable platform meanwhile
remains an open challenge, which we address with this work.

III. A CTIONSLAM ALGORITHM

ActionSLAM is a specific instantiation of the FastSLAM
framework optimized to operate with action landmarks. Action
landmarks are different from visual or Wi-Fi landmarks in two
ways: (i) the action associated to an action landmark is only
observed when the user is at the location of this landmark,
therefore resulting in trivial relative position measurements
zt, and (ii) , landmarks possess a typean related to the
activity performed at this landmark. Action recognition does
not provide the identifiern of an observed landmark, but it
provides the type of the observed landmark, which simplifies
the data association step in FastSLAM.

Figure 1 depicts the main blocks of ActionSLAM. A
foot-mounted IMU is used for both, proprioceptive motion
sensing and detection of location-related actions. Additional
body-mounted sensors allow for recognition of more complex
location-related actions.

A. Position update

In ActionSLAM the beginning of a stance phase (i.e. when
the foot is on the ground and stops moving) triggers a position
update. To detect the beginning of a stance phase from the
foot-mounted IMU, we apply threshold-based stance-phase
detection as proposed by Jiménez et al. [14]. The indext

identifies the corresponding stance phase and the previous
stride phase (when the foot was in the air). Stepsut =

(

lt
φt

)

with length lt and heading changeφt bring the user from
posest−1 to st. We computêut =

( l̂t
φ̂t

)

, an estimate ofut, by
applying quaternion-based ZUPT-PDR as in [26].

Given ût we draw particles[m] according to:

s
[m]
t ∼ p(s

[m]
t |s

[m]
t−1, ût) (3)

As a consequence, each particle will represent a variation
of the measured ZUPT-PDR path. For notational simplicity
we leave away the particle index[m] subsequently. When

assuming Gaussian-distributed PDR errors for bothl̂t and φ̂t,
Equation 3 can be rewritten as follows:

Lt ∼ N(l̂t, σl) (4)

Φt ∼ N(φ̂t + µφ,t, σφ) (5)

sxt = sxt−1 + Lt cos(s
φ
t−1 +Φt) (6)

s
y
t = s

y
t−1 + Lt sin(s

φ
t−1 +Φt) (7)

s
φ
t = s

φ
t−1 + Φt (8)

Here,Lt is the particle’s sampled step length andΦt the
heading change in the particle’s pose during the step. For
heading change, we empirically found that it is beneficial
to include a random walk errorµφ,t ∼ N(µφ,t−1, σµφ

) that
compensates for slow heading drift errors of PDR which we
often observed in preliminary recordings. These errors might
be caused by both, random walk contributions of IMU noise,
and displacements of the wearable sensor.

B. Observation update

At any time, location-related actions may occur and we
assume an action recognition system can detectNA different
types of such actions. For simplicity, we assume that only one
location-related action̂at ∈ {A1, . . . ANA

} can be observed
during stride and stance phaset. Furthermore,̂at is considered
as the null-class actionA0 if no specific location-related
action was recognized. If̂at = A0, no observation update is
performed and the subsequent data association and resampling
steps are skipped.

If howeverât is a known location-related actionAi|i≥1, we
perform an observation update for each particle. In Action-
SLAM, landmark observations are made up ofi) the action̂at
that was recognized, andii) an estimationzt of the position
difference between the landmark with identifiernt and the
current user positionxt = {sxt , s

y
t }. Since action landmarks

are only observed when the user is performing the action (and
therefore at the locationθnt

of the landmark), the relative
landmark position observation in ActionSLAM is:

zt = θnt
− xt = 0 (9)



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Fig. 1. The main blocks of ActionSLAM: ZUPT-PDR takes the readings of a foot-mounted IMU to estimate step length and heading change, while a parallel
Action Recognition (AR) system detects actions from the foot-mounted IMU and further sensors attached to the user. Within the particle filter, multiple
hypotheses about the user’s path and actions are tracked andevaluated against each other. The currently best hypothesis is the output of the tracking system.
The typean of the landmarkn depicted here would be “door opening”.

Each particle in ActionSLAM possesses an internal map
Θ = {{a1, µ1,Σ1}, . . . , {aNL

, µNL
,ΣNL

}} with landmarks
made up of the associated actionan (i.e. the landmark
type) and a Gaussian landmark position estimation with mean
µn and covariance matrixΣn. The differences between the
particle’s position and each of the landmark positions in the
particle’s map are calculated as follows:

ẑn = g(µn,t−1, xt) = µn,t−1 − xt (10)

For ActionSLAM, the JacobianGn of g(µn,t−1, xt) with
respect to the landmark positionsµn is simply the identity
matrix. As a result, many of the original FastSLAM formulas
can be simplified. The landmark observation covariance matrix
is given by:

Qn = Σn,t−1 +Rt (11)

Rt is the measurement covariance matrix. In practice, we do
not only have uncertainty about the locationµn of a landmark
n, but since any action recognition systems is prone to errors,
also about its action typean and the currently performed
actionat. In activity and gesture recognition, this uncertainty
is typically described by a confusion matrix where each entry
indicates the probabilityp(at|ât) of the user having performed
actionat when ât was observed.

Given this confusion matrix and the position uncertainty
Qn, we calculate for each landmarkn in the particle’s map
the likelihood of correspondence with the action observation
at stance phaset as follows (for derivation see [11];η is a
normalization factor):

pn = η|2πQn|
− 1

2 exp (−
1

2
ẑTQ−1

n ẑ) · p(at|ât) (12)

We furthermore assume that with likelihoodη · p0, the cur-
rent observation is unrelated to any landmarks in the particle’s
map and constitutes a new, previously unobserved landmark.
For each of theNA actions types, the probability that a newly
observed landmark has this action type is calculated as follows:

pn = ηp0 · p(at|ât) (13)

C. Data association and landmark update

We now sample the estimated landmark identifiern̂t from
the previously calculated probabilitiespn of having observed
landmark n at step t. If the particle’s map containsNL

landmarks and̂nt is smaller or equalNL, we associate the
observation to a previously known landmark and update the
landmark position and covariance matrix based on the new
observation, following the formulas for a Kalman filter update:

K = Σn̂,t−1Q
−1
n̂ (14)

µn̂,t = µn̂,t−1 −KẑTn̂ (15)

Σn̂,t = (I −K)Σn̂,t−1 (16)

If n̂t > NL the particle tracks the assumption that a new,
previously unseen landmark was observed for the first time.
We therefore initialize a new landmark:

µNL+1,t = st (17)

ΣNL+1,t = Rt (18)

aNL+1 = at (19)

D. Resampling

Each particle[m] has a weightw[m], which is updated
after each observation of a non-null class action followingthis
formula:

w
[m]
t = w

[m]
t−1 · p

[m]
n̂ (20)

The weight describes the confidence in each particle’s
hypothesis. Once all particle weights have been updated, the
particle [b] with highest weightw[b]

t ≥ w
[m]
t ∀[m] is chosen

as the current best guess witĥst = s
[b]
t being the current

ActionSLAM position estimate and̂Θ = Θ[m] the map
estimate. In the following,̂st = ŝ1, . . . , ŝt is denoted as the
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TABLE II
L IST OF THE LOCATION-RELATED ACTIONS THAT OCCURED IN THE EXPERIMENT AND THE SENSOR SETUPS THAT MAY RECOGNIZE THESE ACTIONS.

Abbr. Multimodal Rich IMU Basic IMU Smartphone Foot IMU

Same as Rich IMU,
plus physilogical sen-
sors (e.g. EOG)

Same as Basic IMU
plus addition IMUs at
other wrist, hip, etc.

Same as Smartphone
plus one wrist-
attached IMU

Same as Foot IMU
plus smartphone in
pocket

Single IMU
on foot

W1 Writing (paper)
Writing Sitting, few hand

movements (Si1)
Sitting

Not moving

W2 Writing (PC)
R1 Reading (single page) ReadingR2 Reading (Newspaper)
E1 Eating (bread) Eating Sitting, many hand

movements (Si2)E2 Eating (chocolate)
DW Drinking water Drinking
AP Answer phone Calling

Standing, few hand
movements (St1)

Standing

WT Using water tap Using water tap
WP Watering plants Watering
BB Putting butter on bread Preparing food
BT Brushing teeth Brushing teeth Standing, many hand

movements (St2)CB Cutting bread Preparing food
OCDo Open/close door

Open/Close Open/Close (OC)
OCDr Open/close drawer
OCF Open/close fridge
OCW Open/close window

ActionSLAM path estimate. As for all instances of FastSLAM,
ActionSLAM can post-correct paths since particles store the
full path informationst at any time. The pathst,[b] associated
to the particle[b] is denoted as the posterior path estimate in
this work. After a while, some particles will have very low
weights. To get rid of these particles, we apply systematic
resampling [27] whenever the effective number of particles
Neff = 1

∑

Np

m=1
(w

[m]
t )

is below a threshold.

IV. DATASET

A. Experimental setup

To evaluate ActionSLAM on real data, we set up a recording
simulating daily life at home including activities such as eating
breakfast, opening the windows, working in the home office,
etc. The subject was instructed to fulfill tasks that induced
location-related actions. For example, the task of eating a
slice of bread involved opening the fridge to take out butter,
getting a plate from a drawer, cutting the bread, and finally,
eating while sitting at the kitchen table. See Table II for a
list of the 17 action types that were induced by the13 tasks
in the experimental setup. The recording took about70min,
involved1.69km of walking and241 location-related actions.
The setup involved three adjacent rooms (a kitchen and two
office rooms) and the floor connecting them. The subject left
this area five times to use a water tap located twenty meters
from the kitchen.

We recorded the foot motion with an Xsens MTx sensor
(www.xsens.com) placed at the right foot of the subject, sam-
pling acceleration and rotational velocity at100Hz. Additional
motion sensors were attached to the upper body and the
waist. They are not used in this paper, but foreseen for future
evaluations of action recognition performance.

To obtain reliable ground truth location data, we recorded
the interior of the three main rooms of the experiment using
three GoPro HD Hero2 cameras with 170-degrees fisheye

lenses. The fisheye effect was removed with the Adobe After-
Effects optical compensation tool. The same video processing
software was also applied for stitching together the videos
of the three cameras and rendering a geometrically aligned
overview of the experimental area. In the resulting video we
tracked the position of the sensorized foot by mouse. Parts of
the experimental area were not covered by the three cameras,
so we restricted our ground truth analysis to the visible area.

The actions of the subject were annotated online with a
labeling tool. These labels, the video streams and the motion
sensor data were synchronized during post-processing.

B. Simulating action recognition

This work focuses on evaluating the feasibility of using
actions as landmarks. Therefore we didnot perform action
recognition from motion sensor data, but used the online anno-
tations given during the recording. However, the actions were
chosen in accordance with gesture and activity recognition
literature such as [7], [8] and [9], and we simulated different
setups and recognition accuracies based on literature.

First, we analyzed five levels of sophistication in the action
recognition system. Sensor-rich setups allow for detection
and categorization of subtle actions. When the number of
wearable sensors is reduced, the action types that can be
differentiated tend to be coarser, although the user comfort
may improve. The different granularity levels and a description
of the involved sensor setups is given in Table II. The only
exception where we performed actual action recognition is
the not-movingaction, which we detected whenever the foot
was still for more than2s. This action can be detected from
the foot-mounted IMU alone and it constitutes the simplest
possible implementation of ActionSLAM.

For each sensor setup we also simulated action recognition
errors based on typical confusion matrices reported in litera-
ture, e.g. [8] and [9]. Table III shows the confusion matrix for
a Basic IMU setup as it was used for our work.
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TABLE III
CONFUSION MATRIX FOR SIMULATING NON-IDEAL ACTION RECOGNITION.

null class Si1 Si2 St1 St2 O/C
null class 0.9 0 0 0.02 0.02 0.06
Si1 0 0.8 0.2 0 0 0
Si2 0 0.2 0.8 0 0 0
St1 0.02 0 0 0.7 0.13 0.15
St2 0.02 0 0 0.13 0.7 0.15
O/C 0.06 0 0 0.15 0.15 0.64

C. Landmarks

Each of the actions in Table II could take place at one
or multiple locations in the experimental area. From the
experimental design we derived a ground truth map with
action landmarks placed at the position where we expected
the corresponding actions to take place. In total, 23 landmarks
were inserted in this ground truth map. A subsection of the
full map is depicted in Figure 2. At some locations, multiple
actions could take place. For example, at the kitchen table,the
subject could eat bread, eat chocolate or read the newspaper.
Depending on the sensor setup used in the analysis, this
location had either three associated landmarks (one for each
action), two (for theBasic IMU setup), or only a single
landmark (a landmark with action “sitting” in theSmartphone
setup, and a “not-moving” landmark for theFoot-IMU setup).

OCW

OCDr OCF
CB BB

E1

E2

R2

Fig. 2. This figure shows the kitchen section of the experimental area with
the action landmarks as defined for the ground truth map. The colors and
border marks indicate the association to the different action types for aBasic
IMU sensor setup as described in Table II. The additional “stand” landmarks
were not used for analysis, but depict locations where the subject often stood
still for a while (and “not-moving” was detected by the foot-mounted IMU).

V. RESULTS

A. Performance measurements

Figures 3, 4 and 5 depict results for a single analysis run. We
evaluated ActionSLAM according to the following measures:

• Path accuracy:For each stance phase, we calculated the
euclidean distance between the estimated user position

Fig. 3. The posterior pathxt,[b] as estimated by ActionSLAM (dotted green),
overlayed with the ground truth path where available (solidblue). The kitchen
in Figure 2 is the upper room on the right side.

x̂t = {ŝxt , ŝ
y
t } and the ground truth positionxt. As

shown in Figure 4, we observed a typical pattern in
∆x̂t = |x̂t − xt| with a maximum in the first300m
(where the map was yet unknown) and a subsequent
reduction and convergence of the positioning error (when
landmarks were revisited). To account for this two-phase
behaviour, we report both maximum tracking error and
the mean tracking error during the last hundred meters
of walking in a recording. Path accuracy was measured
for both, the ActionSLAM path estimation̂xt and the
posterior path estimationxt,[b].

• Map accuracy: At every stance phaset, we also cal-
culated the landmark positioning errors for the current
SLAM map Θ̂t. For each ground truth landmark, we
checked for landmarks of identical action type within
a minimal distancedmin = 2m. If no landmark was
found, we counted the landmark as unobserved. For
map accuracy, we calculated the mean distance between
ground truth positionθn and SLAM landmark position
µ̂n of the observed landmarks only. Landmarks in the
SLAM map that could not be associated to any ground
truth landmarks were counted as insertion errors.

• Robustness:We considered an ActionSLAM algorithm
execution to be successfull when the mean posterior path
error was below1m. To account for the probabilistic
nature of ActionSLAM we measured robustness as the
percentage of successfull ActionSLAM runs with identi-
cal settings and inputs.

Note that SLAM maps and paths may be rotated, translated
and scaled versions of the actual map and path. We therefore
applied interior-point optimization to find the best fit between
the ground truth path andxt,[b] at the end of the recording
before calculating the performance measurses. The same ro-
tation, translation and scaling factors were also applied to the
map Θ̂ and the ActionSLAM track̂xt.

B. Parameter Optimization

Before evaluating the algorithm performance on the dataset,
we identified and investigated the most relevant ActionSLAM
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Fig. 4. Mean filtered tracking errors for the PDR path (dottedred), the
ActionSLAM path (dashed green) and the posterior pathxt,[b] (solid blue).
During the first map exploration phase, the tracking error for ActionSLAM
increases at a similar rate as for PDR. Then, after approximately 300m of
walking, the subject started to revisit locations and the tracking error decreased
to less than1.2m.
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Fig. 5. Percentage of identified landmarks (dashed green) and the mean
distance between the already identified landmarks and the corresponding
ground truth landmarks (solid blue). The map error continuously decreases to
about0.51m. After 1180m of walking all landmarks have been identified.

parameters. We optimized the parameters in terms of mean
path accuracy for̂xt, given that the algorithm converged.
To account for the probabilistic nature of ActionSLAM, we
averaged tracking errors over 10 repeated analysis runs with
identical parameters.

The parameter optimization results reported subsequently
were found for theBasic IMU setup and assuming perfect
action recognition. For other sensor setups, similar values
were found. Therefore we consistently use the listed values
throughout the evaluation.

• Prediction update: We performed a joint parameter
sweep forσφ andσµφ

as well as an independent sweep
for σl. The analysis showed that ActionSLAM is not
sensitive toσl and we fixed it to0.01m. The optimal
heading change parameters were found to beσφ = 0.8◦

and σµφ
= 0.12◦. For lower heading change parame-

ters, ActionSLAM did not always converge, while larger
heading change parameters caused an increase in mean
tracking error.

• Observation update: In general, the measurement co-
variance matrixRt is dependent on the observed land-
mark’s action type. For simplicity, we restricted the
analysis to a single matrix of the following form:

Rt =

(

d20 0
0 d20

)

In a parameter sweep we found decreased SLAM robust-
ness ford0 ≤ 0.2m andd0 ≥ 0.35m. As a consequence
we chosed0 = 0.25m for the further evaluation.

• Data association: The probability p0 describes the
likelihood of observing previously unknown landmarks
with respect to the likelihood of reobserving a known
landmark. It affects the number of incorrectly inserted
landmarks when action recognition errors occur and con-
sequently robustness of ActionSLAM. We performed a
parameter sweep with non-ideal action recognition and
found p0 = 0.1 to be the best choice in terms of
maximizing robustness.

• Number of particles: For an ideal action recognition
system, ActionSLAM reliably converged with as few as
Np = 250 particles. For the70min data stream, the
average computation time for our Matlab implementation
of ActionSLAM on a Lenovo T410 laptop (2.66 GHz)
was130.6s.

C. Performance analysis with ideal action recognition

In Table IV we summarize the mapping and path accuracy
results averaged over 10 runs with the parameters found
from the previous optimization and aBasic IMU setup. A
video showing one of these runs was uploaded to https:
//vimeo.com/47293752. We repeated the analysis for the same
dataset but different starting points, therefore simulating slight
variations of the original scenario. ActionSLAM consistently
produced accurate maps and allowed tracking with accuracy
of 1.16±0.05m after initial map learning. The mean landmark
positioning error was0.46±0.04m and the posterior path mean
error0.41±0.04m. We assume that the ground truth errors due
to inaccurate optical correction and tracking are in a similar
range. ActionSLAM converged for all runs withNp = 250
particles and was considered as robust in this scenario and
with ideal action recognition.

We compared the ActionSLAM performance for different
sensor setups to find an ideal trade-off between tracking
accuracy and system obtrusiveness. Figure 6 summarizes the
main results for each sensor setup, again averaged over 10
runs. We found that the performance in terms of mean tracking
error and map accuracy was similar for all setups, including
theFoot-IMU-only setup. The similar performance is probably
a consequence of the distance between landmark locations,
which was mostly significantly larger thand0. In that case,
the additional type information of action landmarks was not
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TABLE IV
PERFORMANCE AVERAGED OVER10 RUNS (ACTIONSLAM CONVERGED

FOR ALL RUNS). REPORTED NUMBERS ARE FOR ABasic IMU SENSOR

SETUP.

Analysis start [m] 0 200 400
Mean tracking error [m] 1.18± 0.05 1.13± 0.04 1.16± 0.07
Maximum tracking error
[m]

3.09± 0.73 1.48± 0.15 1.52± 0.23

Posterior path mean
tracking error [m]

0.43± 0.05 0.39± 0.02 0.42± 0.04

Posterior path maximum
tracking error [m]

0.75± 0.17 0.52± 0.07 0.55± 0.19

Mean landmark posi-
tioning error [m]

0.48± 0.05 0.44± 0.02 0.46± 0.04

Number of erroneously
inserted landmarks

4.5 2 1.9

necessary for landmark identification with an ideal action
recognition system.

In terms of maximum tracking errors, the simpleSmart-
phonesetup and theFoot-IMU setup outperformed the sensor-
rich settings. The reason for this is that simple action recog-
nition systems distinguished fewer landmarks, but observed
these landmarks more frequently. For example, the actions E1,
E2 and R2 all took place at the same location (see Figure
2), but were considered as observations of three different
landmarks (with same location, but different type) in a sensor-
rich setup. For aSmartphonesetup, all these actions were
associated to a single landmark. Due to the more frequent
observations, the algorithm converged faster and the map
learning phase was shorter, which resulted in lower maximum
errors.

This indicates that a simple, unobtrusive setup may be suffi-
cient for accurate and robust mapping of indoor environments.
In general, we expected simpler setups to fail if actions take
place at close (distance between landmarks smaller thand0),
but different locations. As an example, consider the action
landmarks of types WT and BB in Figure 2. A basic sensor
setup is not able to distinguish the two landmarks and might
introduce errors in the map due to incorrect data association.
For the experimental dataset, the analysis showed that thiswas
not an issue with ideal action recognition.

D. Performance analysis with action recognition errors

In the previous discussion we assumed an ideal action
recognition system and found that simple sensor setups are
sufficient for robust and accurate tracking with ActionSLAM.
In this section we analyze the influence of non-ideal action
recognition on ActionSLAM performance. Table V reports
averaged results of an analysis with simulated action recogni-
tion errors (based on the confusion matrix in Table III) and
a Basic IMU sensor setup. As expected we observed that
many landmarks were added to the map due to insertion errors
of action recognition. Most of these landmarks were only
observed once during the experiment. By removing landmarks
from the map when they are not observed for a minimum time,
we could avoid this erroneous landmark insertion in future.

The main difficulty that arised as a consequence of action
recognition errors was that withNp = 250, ActionSLAM
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Fig. 6. Performance comparison for different sensor setupsin terms of
maximum ActionSLAM path error (left, blue), mean ActionSLAM path error
(middle, green) and posterior map accuracy (right, red) aredepicted. SLAM
converged for all runs. For theFoot-IMU setup, actual action recognition was
performed (i.e. detection ofnot-moving), while ground truth labels were used
for the other setups. While the algorithm performed similarfor all sensor
setups, the maximum tracking errors for simple setups was lower then for
sensor-rich settings

often failed to converge. In Figure 7 we show the percentage
of ActionSLAM runs that failed as a function ofNp. As we
can observe, for250 particles, the algorithm converged for less
than90% of the runs. On the other side, even with more than
1000 particles, there were still a few runs where ActionSLAM
did not converge. This indicates that for some critical error
insertion patterns, ActionSLAM is not capable of recovering.
Fusion with other modalities such as Wi-Fi might improve
robustness in such cases.

As for ideal action recognition, we analyzed the perfor-
mance of different sensor setups (with identical confusionma-
trix). We found that incorrect landmark insertion has a stronger
effect on robustness for simple setups, most likely due to error-
prone data association. While robustness for aFoot IMU setup
was only77% with Np = 250, it increased to85% and90% for
theSmartphoneandBasic IMU setups. This confirms that the
landmark type information helps to filter out incorrect action

TABLE V
PERFORMANCE ANALYSIS WITH ACTION RECOGNITION ERRORS

AVERAGED OVER 100RUNS FORNp = 250 AND 10 RUNS FOR

Np = 2500.

Number of particles Np 250 2500
Mean tracking error [m] 1.27± 0.11 1.21 ± 0.09
Maximum tracking error [m] 2.63± 0.62 2.39 ± 0.56
Posterior path mean tracking
error [m]

0.48± 0.14 0.43 ± 0.07

Posterior path maximum
tracking error [m]

1.36± 0.88 0.82 ± 0.45

Mean landmark positioning
error [m]

0.70± 0.11 0.62 ± 0.10

Number of erroneously in-
serted landmarks

46 42

Number of not-converged
analyses (not included above)

15/100 1/10
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Fig. 7. Percentage of converged ActionSLAM runs. ForNp ≤ 500, 100
runs each were executed. ForNp = 1000, we performed20 ActionSLAM
runs and forNp > 1000 10 ActionSLAM runs each.

observations and therefore is valuable for ActionSLAM. For
sensor-richer setups, no further improvement was observed.
We concluded that aSmartphoneor a Basic IMU setup are
good trade-offs between system obtrusiveness and robustness,
although further evaluation is necessary.

VI. SYNTHETIC DATA ANALYSIS

A. Generation of synthetic IMU data

Many of the influences on algorithm performance can not
be tested with a single dataset. These include building layout,
number of landmarks, sequence of performed actions etc.
To generalize the results of our experiment, we developed a
simulation tool for generation of IMU signals from a building
layout and a sequence of activities. First, we fit a path
that corresponds to a pre-defined action sequence into the
building layout. Location-related actions take place uniformly
distributed within a radius of0.2m of pre-defined landmark
locations with the same action type. The resulting path is then
divided into steps. Since ZUPT-PDR works as an integrator
in the stride phase and we assume purely additive noise, we
used a very basic approximation of step acceleration patterns
as given in [28]. At turns, we added a single non-zero sample
to the gyroscope signal with full heading changeφ = ∆T ·ω.
IMU errors were added according to the sensor datasheets.
For the results presented here we used the error models for
Xsens MTx sensors that are described in [29]. The validity of
this simulation was confirmed by measuring the PDR error
accumulation, which turned out to be similar to the PDR
performance we obtained for preliminary recordings with foot-
mounted IMUs (in the range of 1% of the distance traveled,
mostly caused by heading drift).

B. Building layout analysis

A simulation-based analysis was done for four different
building layouts and action sequences inspired by daily life. As
can be seen from Figure 8, the ActionSLAM posterior path
accurately reflects the building layout in all scenarios. The
mean ActionSLAM path error for aBasic IMU setup averaged

Fig. 8. Building layouts used for simulation of walks in daily life with
the overlayed posterior paths as found by ActionSLAM. The total walking
distance was between476m for Scenario S2 and960m for S3, with the
number of landmarks being between19 (S2) and31 (S3). The same action
types as for the real dataset were distinguished.

over all maps and ActionSLAM runs (for each map, results
for 5 different action sequences an 10 ActionSLAM runs per
action sequence were taken into account) was1.03± 0.42m,
the mean posterior path error0.61 ± 0.53m and the mean
map accuracy0.55 ± 0.43m, which is comparable to what
we found for the real dataset. When action recognition errors
were introduced, the robustness dropped to75% for Scenario
S1, to85% for Scenarios S2 and S4 and stayed at100% for
Scenario S3. All these values were found forNp = 500. As
seen previously, robustness improves when the particle number
is increased.

VII. C ONCLUSIONS ANDOUTLOOK

In this work we presented ActionSLAM, a simultaneous
localization and mapping algorithm that makes use of location-
related actions as landmarks in its internal representation of
the environment. We showed experimentally and by simulating
typical action recognition systems that the algorithm is robust
towards errors in the recognition of such actions and capable
of mapping the environment with mapping accuracy of0.5m
and path accuracy of1.2m. We confirmed these findings
in simulated walking scenarios. By comparing the mapping
capabilities of different sensor setups we found that simple
setups result in faster convergence of ActionSLAM compared
to sensor-rich action recognition systems while offering similar
mapping accuracy. This may however come at the cost of
lower robustness. Preliminary results suggest that aBasic IMU
setup consisting of two motion sensors attached to the foot and
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the wrist and a smartphone in the trouser pocket may achieve
sufficient robustness while being unobtrusive to the user.

Typical application scenarios of ActionSLAM will be in
ambient-assisted living, home rehabilitation and person mon-
itoring both at home and in office or manufacturing en-
vironments. ActionSLAM may be applied in any scenario
where users repeatedly perform location-related actions with-
out walking long distances in between. Due to the low
computational requirements (only as few as1000 particles are
required for robust mapping, compared to≥ 10000 particles
in FastSLAM [24]), ActionSLAM is also well suited for
real-time implementation on a smartphone. To achieve higher
robustness, the algorithm could be extended in various ways,
for example by fusion with other modalities such as Wi-Fi or
deployed switches in the environment.

In future we will deploy and test ActionSLAM in real
world, with state-of-the-art action recognition integrated. We
will furthermore apply methods for tracking with unknown
starting position in previously built maps, so that maps can
be reused whenever a building is revisited. The particle filter
approach is well-suited for this task, as it can generate and
track particles with different starting positions at initialization.
GPS may be used for anchoring of multiple indoor maps to
global coordinates. Specifically, we will use ActionSLAM to
support assistance of persons with Parkinson’s disease at their
home. In this context, analyzing gait and limb movements is
required to assess efficacy of physical training and drugs. This
is assessed by wearable sensors deployed on the feet, trunk and
limb extremities. ActionSLAM will be used to provide user
location “for free” from this existing sensor configuration.
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