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Abstract—Indoor localization at minimal deployment effort
and with low costs is relevant for many ambient intelligence
and mobile computing applications. This paper presents Ac-
tionSLAM, a novel approach to Simultaneous Localization Ard
Mapping (SLAM) for pedestrian indoor tracking that makes use
of body-mounted sensors. ActionSLAM iteratively builds a nap
of the environment and localizes the user within this map. Adot-
mounted Inertial Measurement Unit (IMU) keeps track of the
user’s path, while observations of location-related actins (e.g.
door-opening or sitting on a chair) are used to compensate fo
drift error accumulation in a particle filter framework. Loc ation-
related actions are recognizable from body-mounted IMUs that
are often used in ambient-assisted living scenarios for coext
awareness. Thus localization relies only on on-body sengjrand
requires no ambient infrastructure such as Wi-Fi access paits
or radio beacons.

We characterize ActionSLAM on a dataset of 1.69km walking
in three rooms and involving 241 location-related actions.For
the experimental dataset, the algorithm robustly tracked he
subject with mean error of 1.2m. The simultaneously built ma
reflects the building layout and positions landmarks with a nean
error of 0.5m. These results were achieved with a simulated
action recognition system consisting of an IMU attached tohe
wrist of a user and a smartphone in his pocket. We found
that employing more complex action recognition is not benetial
for ActionSLAM performance. Our findings are supported by
evaluations in synthetic environments through simulationof IMU
signals for walks in typical home scenarios.

I. INTRODUCTION

ments and localization of a subject within this environniéht
SLAM combines proprioceptive sensors for keeping track of
the subject’s motion, and exteroceptive sensors for obsgrv
landmarks in the environment. A key characteristic of SLAM
implementations is the modality of the landmarks identified
by the exteroceptive sensors. The choice of an appropriate
sensor setup for landmark recognition influences bothkimac
accuracy and usability of the system.

In this work we proposeActionSLAM a SLAM imple-
mentation for pedestrian tracking whose novelty is to use
location-related actions as landmarks. A single foot-ntedn
IMU is applied for proprioceptive motion sensing, together
with an action recognition system for landmark observation
Location-related actions are body movements that only roccu
at specific locations in the environment. For example, the
door-opening action is always executed close to doors,lgimp
because it can only be executed when a door is in reach.
Research in activity and gesture recognition showed that it
is possible to identify such actions by applying machine
learning techniques for classification of motion sensodiregs
[7]. Examples include recognizing “door opening” from a
wrist-worn IMU ([8], [9]), or “sitting down on a chair”
from a waist-mounted accelerometer [10]. In daily life at
home, location-related actions occur frequently with es$p
to distance traveled (e.g. a person stands up from his chair,
opens the door, walks to the kitchen to open the fridge, takes

Activity monitoring is commonly used for context-awareout food, walks back to the living room, closes the door,
home assistance, rehabilitation, or implicit energy ma&nagand sits down again). ActionSLAM is an instantiation of the

ment applications ([1], [2], [3]). Besides activities, theer’s

FastSLAM algorithmic framework [11] adapted to handle the

location is a relevant source of context information in suatharacteristics of action landmarks while being robustims
scenarios [4]. For example by fusing location information taction recognition errors.

fall detection systems such as the Android applicationliFal We evaluated ActionSLAM in an experiment simulating
[5], one could objectively create hazard maps, showingsaregaily life at home that included.69km of walking and

of frequent falls at home.

performing 241 location-related actions. ActionSLAM was

In order to minimize costs, decrease deployment effort, agelpable of mapping the experimental area with a mean error
increase user acceptance, it is interesting to avoid locatin landmark positioning of less tha.5m and tracked the

tracking systems that require modifications of the envirenin
prior expert calibration, or prior maps of the indoor surdu
ings. This is particularly beneficial for location trackirig

user’s position with mean error of.2m. Furthermore, we
applied ActionSLAM to synthetic motion data of performing
daily routines in four different buildings and found simila

private homes and for location-aware consumer wearablesresults as for the real dataset. Our analysis showed that an

Simultaneous localization and mapping is an algorithmimobtrusive action recognition system consisting of a twris
framework that can address this by allowing for iterativggttached motion sensor and a smartphone may be sufficient
autonomous map building of previously unknown envirorfor reliable mapping and localization at home.
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Il. BACKGROUND EKF-SLAM. It has been successfully applied in many robotics

A. Indoor Localization applications, e.g. [16].

. L An alternative is to estimate the posterior over all paths
The state-of-the-art approach to indoor localization of, : : P P
= si1,...,8 instead of just the current poses. The

pgdgstrlans Is radio freq_uency (.R'.:) f|rlgerpr|nt|ng, eitsng resulting algorithmic framework is known as FastSLAM [11],
Wi-Fi or GSM [12]. RF fingerprinting is a two-stage process; . ; . : . ; .
. . X . Wijth a detailed discussion given by Thrun et al. in [17]. This
In an offline mapping phase, fingerprints are recorded . . . : ;
. . ! . . framework can be instantiated to various kinds of motion and
known positions to build a prior map. Then, in the onlin

localization phase, RF signal strengths are measured j%r(ljdmark sensing modalities by providing approprlate_z ferro
odelsp(s¢|si—1,u:) and p(z¢|s¢, ©). We use the notations

compared .to_ the flngerprln.ts. n the_pre—recgrded map. To?[l?] throughout this work. Estimating the posterior oedir
effort of building and maintaining a prior map is acceptahle Baths enables the following factorization:

public indoor environments with many users of a single ma
but a drawback for deployment in private scenarios, where a

map is only used by one or few people. Ne

A set of tracking methods known as Pedestrian Dead?(s', ©l2",u’,n") = p(s'[z",u’,n") T] p(Onls', 2", n") (2)
Reckoning (PDR) does not require prior mapping and is n=1
therefore suitable for exploration tasks in previously mmkn In this way, the SLAM problem is decomposed into seperate

environments. In PDR, position is inferred from wearablgstimators for the person’s patsf and each of theN;
motion sensors. The highest accuracy reported in litegair landmark locations. In FastSLAM, the path probability den-
reached with foot-mounted inertial measurement units ®Ad ity function p(st|z*, u!, n') is calculated by a particle filter,
called Zero-Velocity Updates (ZUPT-PDR). The observatiophile the N;, landmark location probability density functions
of having the foot on the ground and therefore velocity zergg, |st, »*, nt) are estimated with EKFs. Since the landmark
is used to compensate for error accumulation when integyatiocations are conditioned on the person’s path, each feartic
the IMU acceleration and rotational velocity measuremémts (indexed with [m]) must maintain its own set of landmarks
position ([13], [14]). An alternative is to combine stepe@et @™l together with the current path estimatiehl”!.
tion and heading estimation from body-attached smartphione A difficulty that often arises in SLAM is to uniquely
to infer the user’s path [15]. All PDR methods suffer fromyssociate observations to a landmark: In practice, therianki
error accumulation with time and are therefore not intendegentifier n, is often not known or uncertain since multi-
for long-term pedestrian tracking. ple landmarks may look identical. In EKF-SLAM, only the
B. SLAM most likely data association hypothesis is tracked - if this
' ] ] association is incorrect, EKF-SLAM often fails to converge
~ SLAM combines odometry measurements (in human trackzgis| AM has multiple advantages over EKF-SLAM such as
ing typically PDR) with exteroceptive sensing to simultagyver computational requirements and the capability ofirugp
ne;)uzly estimate a rg)oblle agent's pose (location z; = ith non-linear motion models. However, the key advantage
{st,s¢} and headings;) and build a spatial ma@ of his s that FastSLAM is capable of multi-hypothesis tracking.
environment [6]. SLAM was originally introduced in robaic The particle filter of FastSLAM can draw samples following
but recently implementations for human tracking were pres jtiple hypotheses and filters out incorrect data associst

sented (see Section II-C). The goal in SLAM is to find thg; 5 |ater stage, when more observations are available [18].
poses; and map®© that maximize the following probability

density function: C. Landmarks in pedestrian SLAM

Both EKF-SLAM and FastSLAM have been applied to
human indoor tracking, making use of different exterocepti

At time ¢, the proprioceptive sensors of the SLAM systersensing modalities. In Table | a selection of published work
provide a motion update measurementwith u* = u;,...u; on SLAM applied to human indoor tracking is presented and
being the history of measurments. At the same time, landsnarkifferences in terms of position update strategy, landmypk
in the environment are observed. is a measurement of theand algorithmic framework are listed.
landmark’s position relative to the current user positionis So far, visual and Wi-Fi landmarks have been applied in
the identifier of the landmark observed at timén general, pedestrian SLAM. FootSLAM [23] and WiSLAM [25] do not
multiple landmarks may be observed at a timé)= z;,...2; use landmarks in the map representation, but instead count
is the history of landmark position observations, arfd= transitions between hexagonal map elements, assuming that
ni,...n; the history of landmark identifications. some areas of the environment are traversed in only one

The probability density functiop(s;, ©|u’, z*,n*) can be direction and its opposite (e.g. floors). Computationalieg
estimated by means of an extended Kalman filter (EKF) amgents and obtrusive sensor placement are major limitatibns
two independent models for position update;|u., s;—1) and visual landmarks for use in daily life [19]. Wi-Fi landmarks
observation update(z:|s:, 0.,,n+). 0, is the location of the are computationally much more lightweight and offer room-
landmarkn, observed at time. This approach is known aslevel tracking accuracy if sufficient Wi-Fi coverage is dahble

p(sta®|utaztant) (1)
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TABLE |

PEDESTRIANSLAM IMPLEMENTATIONS

Researchers PDR Method (Sensor) Observation (Sensor) Algorithmic framework Evaluation results
Pradeep et al. [19] Stereo vision odometry] Visual object recognition| FastSLAM High-accuracy tracking, large com-
(stereocam) (stereocam) putational and storage require-
ments
Ferris et al. [20] Probabilistic motion model] Wi-Fi landmarks (Wi-Fi | Gaussian process latent Mean error of4m in offline anal-
(no sensor) radio) variable model (offline) ysis

Shin et al.; MARTSLAM
[21], [22]

Step counting and headin
determination (smartphong
in pocket)

y Wi-Fi landmarks (Wi-Fi
2 radio)

FastSLAM

Mean error of3m for a smartphone
implementation

Robertson et al.: &0T-
SLAM [23], [24]

ZUPT-PDR (foot-mounted
IMU)

Walking patterns (foot-
mounted IMU)

Particle filter (similar to
FastSLAM)

Mean error of 2m, but requires
a desktop computer for real-time

execution
Increased robustness of FOOtSLAM

Bruno and Robertson
WISLAM [25]

ZUPT-PDR (foot-mounted
IMU)

Particle filter (similar to
FastSLAM)

Walking patterns an
Wi-Fi (foot-mounted IMU
and Wi-Fi radio)

[22]. Providing maps and simultaneous localization with irassuming Gaussian-distributed PDR errors for bptnd ¢,
room accuracy on a low-power wearable platform meanwhilequation 3 can be rewritten as follows:
remains an open challenge, which we address with this work.

l1l. ACTIONSLAM ALGORITHM Ly ~ N(l, o) (4)
ActionSLAM is a specific instantiation of the FastSLAM O~ N(ot+ o, 09) )
framework optimized to operate with action landmarks. ati s? = s7,+ Lycos(s{_, + @) (6)
landmarks are different from visual or Wi-Fi landmarks irotw sY sV + Lysin(s?_| + @) 7)
ways: (i) the action associated to an action landmark is only o o o 8
observed when the user is at the location of this landmark, St = S TP (8)

therefore resulting in trivial relative position measuents Here, L, is the particle’s sampled step length adg the

z, and (i), landmarks possess a typs, related to the heading change in the particle’s pose during the step. For
activity performed at this landmark. Action recognitioneso heading change, we empirically found that it is beneficial
not provide the identifier. of an observed landmark, but ity include a random walk errqug; ~ N(ugi—1,0,,) that
provides the type of the observed landmark, which simplifiegmpensates for slow heading drift errors of PDR which we
the data association step in FastSLAM. often observed in preliminary recordings. These errorshinig

Figure 1 depicts the main blocks of ActionSLAM. Ape caused by both, random walk contributions of IMU noise,
foot-mounted IMU is used for both, proprioceptive motiomng displacements of the wearable sensor.

sensing and detection of location-related actions. Adudil
body-mounted sensors allow for recognition of more complék Observation update

location-related actions. At any time, location-related actions may occur and we
assume an action recognition system can dedectdifferent
types of such actions. For simplicity, we assume that only on
In ActionSLAM the beginning of a stance phase (i.e. whelocation-related actio;, € {A1,... Ay, } can be observed
the foot is on the ground and stops moving) triggers a positiduring stride and stance phasé-urthermoreg; is considered
update. To detect the beginning of a stance phase from e the null-class actiom, if no specific location-related
foot-mounted IMU, we apply threshold-based stance-phaaetion was recognized. B, = Ay, no observation update is
detection as proposed by Jiménez et al. [14]. The intdexperformed and the subsequent data association and reegmpli
identifies the corresponding stance phase and the previsteps are skipped.
stride phase (when the foot was in the air). Steps= (lft) If howevera, is a known location-related actiof;;>,, we
with length /; and heading change; bring the user ﬁom perform an observation update for each particle. In Action-
poses;_; to s;. We computei; = (ZJ), an estimate of,;, by SLAM, landmark observations are made up)othe actiona;
applying quaternion-based ZUPT-PDR as in [26]. that was recognized, ani an estimationz, of the position
Given i, we draw particlem] according to: difference between the landmark with identifiey and the
current user positiom; = {s¥,s{}. Since action landmarks
(3) are only observed when the user is performing the action (and
therefore at the locatiod,,, of the landmark), the relative
As a consequence, each particle will represent a variatigmdmark position observation in ActionSLAM is:
of the measured ZUPT-PDR path. For notational simplicity
we leave away the particle indexn] subsequently. When

A. Position update

[m] (m] - )

St Np(sw[fmustflvut

9)

thent—(Et:O
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Fig. 1. The main blocks of ActionSLAM: ZUPT-PDR takes thediegs of a foot-mounted IMU to estimate step length and epdhange, while a parallel
Action Recognition (AR) system detects actions from thet-foounted IMU and further sensors attached to the user.ifwitie particle filter, multiple
hypotheses about the user’s path and actions are trackedvahdited against each other. The currently best hypstiesie output of the tracking system.
The typea,, of the landmarkn depicted here would be “door opening”.

Each particle in ActionSLAM possesses an internal map
0 = {{a1,p1,51}, ..., {an,, N, , N, }} With landmarks Pn = npo - plag|ag) (13)
made up of the associated actien, (i.e. the landmark o
type) and a Gaussian landmark position estimation with mefm Data association and landmark update
1, and covariance matrix.,,. The differences between the We now sample the estimated landmark identifigrfrom
particle’s position and each of the landmark positions i@ ththe previously calculated probabilities of having observed

particle’s map are calculated as follows: landmarkn at stept. If the particle’s map containsvy
landmarks andh; is smaller or equalNV;, we associate the
Zn = g(lint—1,Tt) = fnt—1 — Tt (10) observation to a previously known landmark and update the

landmark position and covariance matrix based on the new

For ActionSLAM, the Jacobiarti, Of g(jun.—1,2¢) With — gpeanation, following the formulas for a Kalman filter upeta
respect to the landmark positions, is simply the identity

matrix. As a result, many of the original FastSLAM formulas

can be simplified. The landmark observation covarianceirmatr K = Eﬁ,t_ngl (14)
is given by: pas = pae_ — K27 (15)
Yar = [ —-K)Xai_ 16

Qu="Sni1 + R, (11) o = U= K)Eam (16)

R, is the measurement covariance matrix. In practice, we doIf e > Ny the particle tracks the assumption thaF a new,
not only have uncertainty about the locatiep of a landmark previously unseen landmark was observed for the first time.

. ) " ) \We therefore initialize a new landmark:
n, but since any action recognition systems is prone to errors

also about its action type, and the currently performed

actiona,. In activity and gesture recognition, this uncertainty LN+l = S (17)
is typically described by a confusion matrix where eachyentr S - R (18)
indicates the probability(a, |, ) of the user having performed Netht !

actiona; whena, was observed. aNp+1 = Q¢ (19)

Given this confusion matrix and the position uncertainty, Resampling
Q@n, we calculate for each landmarkin the particle’s map
the likelihood of correspondence with the action obseovati
at stance phase as follows (for derivation see [11}; is a
normalization factor):

Each particle[m] has a weightw!™!, which is updated
after each observation of a non-null class action followting
formula:

wi™ = w)" -l (20)

_1 1 ~T —1 2~ ~
P = 2@l eXp(_§Z @n %) - placla) (12) The weight describes the confidence in each particle’s
We furthermore assume that with likelihogd p,, the cur- hypothesis. Once all particle weights have been updated, th
rent observation is unrelated to any landmarks in the paitic particle [b] with highest weightw)” > w!™V[m] is chosen
map and constitutes a new, previously unobserved landmaak. the current best guess with = s!ﬂ being the current

For each of theV, actions types, the probability that a newlyActionSLAM position estimate and® = ©[™ the map
observed landmark has this action type is calculated asisll estimate. In the followings® = 51,...,3; is denoted as the
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TABLE 1l
LIST OF THE LOCATION-RELATED ACTIONS THAT OCCURED IN THE EXPERIMENT AND THE SENSR SETUPS THAT MAY RECOGNIZE THESE ACTIONS

Abbr. | Multimodal | Rich IMU | Basic IMU | Smartphone | Foot IMU
Same as Rich IMU| Same as Basic IMU Same as Smartphong Same as Foot IMU| Single IMU
plus physilogical sen- plus addition IMUs at| plus one  wrist-| plus smartphone in| on foot
sors (e.g. EOG) other wrist, hip, etc. | attached IMU pocket

W1 Writing (paper) -

W2 Writing (PC) Writing Sitting, few hand

R1 Reading (single page) Readin movements (Sil)

R2 Reading (Newspaper) 9 Sitting

E1l Eating (bread) . .

E2 Eating (chocolate) Eating ig\'/l?n g:]?sn )Eshg] d

DW Drinking water Drinking

AP Answer phone Calling

WT Using water tap Using water tap Standing, few hand Not moving

WP Watering plants Watering movements (St1)

BB Putting butter on bread | Preparing food

BT Brushing teeth Brushing teeth Standing, many hand Standin

CB Cutting bread Preparing food movements (St2) 9

OCDo | Open/close door

OCDr | Open/close drawer

OCE Openclose Tridge Open/Close Open/Close (OC)

OCW | Open/close window

ActionSLAM path estimate. As for all instances of FastSLAMlenses. The fisheye effect was removed with the Adobe After-
ActionSLAM can post-correct paths since particles stoee tlicffects optical compensation tool. The same video proogssi
full path informations® at any time. The patk® [’ associated software was also applied for stitching together the videos
to the particle[b] is denoted as the posterior path estimate iof the three cameras and rendering a geometrically aligned
this work. After a while, some particles will have very lowoverview of the experimental area. In the resulting video we
weights. To get rid of these particles, we apply systematiacked the position of the sensorized foot by mouse. Péarts o
resampling [27] whenever the effective number of particldhe experimental area were not covered by the three cameras,
is below a threshold. so we restricted our ground truth analysis to the visibl@aare
The actions of the subject were annotated online with a
labeling tool. These labels, the video streams and the motio
sensor data were synchronized during post-processing.

_ 1
Neff - fo:l(wim])

IV. DATASET
A. Experimental setup

To evaluate ActionSLAM on real data, we set up a recordirfgy Simulating action recognition
simulating daily life at home including activities such agieg This work focuses on evaluating the feasibility of using
breakfast, opening the windows, working in the home officactions as landmarks. Therefore we didt perform action
etc. The subject was instructed to fulfill tasks that inducegcognition from motion sensor data, but used the onlin@ann
location-related actions. For example, the task of eatingtations given during the recording. However, the actionsewe
slice of bread involved opening the fridge to take out buttecthosen in accordance with gesture and activity recognition
getting a plate from a drawer, cutting the bread, and finalljterature such as [7], [8] and [9], and we simulated différe
eating while sitting at the kitchen table. See Table Il for aetups and recognition accuracies based on literature.
list of the 17 action types that were induced by th& tasks First, we analyzed five levels of sophistication in the actio
in the experimental setup. The recording took abfthin, recognition system. Sensor-rich setups allow for detactio
involved 1.69%km of walking and241 location-related actions. and categorization of subtle actions. When the number of
The setup involved three adjacent rooms (a kitchen and twearable sensors is reduced, the action types that can be
office rooms) and the floor connecting them. The subject lafifferentiated tend to be coarser, although the user cdmfor
this area five times to use a water tap located twenty metengy improve. The different granularity levels and a dediznip
from the kitchen. of the involved sensor setups is given in Table Il. The only

We recorded the foot motion with an Xsens MTx sensaxception where we performed actual action recognition is
(www.xsens.com) placed at the right foot of the subject,-sarhe not-movingaction, which we detected whenever the foot
pling acceleration and rotational velocityl@0 H . Additional was still for more thars. This action can be detected from
motion sensors were attached to the upper body and the foot-mounted IMU alone and it constitutes the simplest
waist. They are not used in this paper, but foreseen for éutysossible implementation of ActionSLAM.
evaluations of action recognition performance. For each sensor setup we also simulated action recognition

To obtain reliable ground truth location data, we recordestrors based on typical confusion matrices reported imalite
the interior of the three main rooms of the experiment usirtgre, e.g. [8] and [9]. Table Ill shows the confusion matiix f
three GoPro HD Hero2 cameras with 170-degrees fisheg®asic IMU setup as it was used for our work.
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TABLE Il
CONFUSION MATRIX FOR SIMULATING NON-IDEAL ACTION RECOGNITION.

| nullclass Si1  Si2  st1 St2  O/C

null class 0.9 0 0 0.02 0.02 0.06
Sil 0 08 0.2 0 0 0
Si2 0 0.2 0.8 0 0 0
Stl 0.02 0 0 0.7 013 0.15
St2 0.02 0 0 0.13 0.7 0.15
o/C 0.06 0 0 0.15 0.15 0.64

C. Landmarks

Each of the actions in Table Il could take place at or_JHq M

or multiple locations in the experimental area. From the
experimental design we derived a ground truth map wiffig- 3. The posterior patht:[*] as estimated by ActionSLAM (dotted green),

action landmarks placed at the position where we expec
the corresponding actions to take place. In total, 23 lamksna

overlayed with the ground truth path where available (sblige). The kitchen

tiﬁ igure 2 is the upper room on the right side.

were inserted in this ground truth map. A subsection of the
full map is depicted in Figure 2. At some locations, multiple 7, — {37 3¥} and the ground truth position,. As

actions could take place. For example, at the kitchen tainée,

shown in Figure 4, we observed a typical pattern in

subject could eat bread, eat chocolate or read the newspaper Az, = |#; — z;| with a maximum in the firs300m

Depgnding on the sensor setup used in the analysis, this (where the map was yet unknown) and a subsequent
location had either three associated landmarks (One fdr eac reduction and convergence of the positioning error (When

action), two (for theBasic IMU setup), or only a single
landmark (a landmark with action “sitting” in th@martphone
setup, and a “not-moving” landmark for tleot-IMU setup).

Fig. 2. This figure shows the kitchen section of the expertalesrea with
the action landmarks as defined for the ground truth map. TDhers and
border marks indicate the association to the differenbadypes for aBasic
IMU sensor setup as described in Table Il. The additional “Stemtimarks
were not used for analysis, but depict locations where thgstioften stood
still for a while (and “not-moving” was detected by the fonbunted IMU).

V. RESULTS
A. Performance measurements

landmarks were revisited). To account for this two-phase
behaviour, we report both maximum tracking error and
the mean tracking error during the last hundred meters
of walking in a recording. Path accuracy was measured
for both, the ActionSLAM path estimatio! and the
posterior path estimation®[’!.

o Map accuracy: At every stance phasg we also cal-
culated the landmark positioning errors for the current
SLAM map ©,. For each ground truth landmark, we
checked for landmarks of identical action type within
a minimal distanced,,;, = 2m. If no landmark was
found, we counted the landmark as unobserved. For
map accuracy, we calculated the mean distance between
ground truth positiord,, and SLAM landmark position
it, Of the observed landmarks only. Landmarks in the
SLAM map that could not be associated to any ground
truth landmarks were counted as insertion errors.

o Robustness:We considered an ActionSLAM algorithm
execution to be successfull when the mean posterior path
error was belowlm. To account for the probabilistic
nature of ActionSLAM we measured robustness as the
percentage of successfull ActionSLAM runs with identi-
cal settings and inputs.

Note that SLAM maps and paths may be rotated, translated
and scaled versions of the actual map and path. We therefore
applied interior-point optimization to find the best fit be®n
the ground truth path and”’! at the end of the recording
before calculating the performance measurses. The same ro-
tation, translation and scaling factors were also appliethé
map© and the ActionSLAM tracki:.

Figures 3, 4 and 5 depict results for a single analysis run. We o
evaluated ActionSLAM according to the following measure®- Parameter Optimization
« Path accuracy:For each stance phase, we calculated the Before evaluating the algorithm performance on the dataset
euclidean distance between the estimated user positiva identified and investigated the most relevant ActionSLAM



2012 International Conference on Indoor Positioning ardbém Navigation, 13-18 November 2012

ando,, = 0.12°. For lower heading change parame-

ters, ActionSLAM did not always converge, while larger
£ — Posterior path headjng change parameters caused an increase in mean
6F e ACtONSLAM tracking error.
£ N . ZUPT-PDR . Obgervatmn u_pdat_e: In general, the measurement co-
S a variance matrixR; is dependent on the observed land-
O ar '...' mark’s action type. For simplicity, we restricted the
% . analysis to a single matrix of the following form:
= H
'_,‘ ‘..,...‘._‘_" _".-“‘.., ...... SPIRERTL S 0
; — In a parameter sweep we found decreased SLAM robust-
% 500 1000 1500 ness fordy < 0.2m anddy > 0.35m. As a consequence
Walking distance [m] we chosedy = 0.25m for the further evaluation.

! . . o Data association: The probability p, describes the
Fig. 4. Mean filtered tracking errors for the PDR path (dotted), the

ActionSLAM path (dashed green) and the posterior paltti®! (solid blue). “k_e“hOOd of observmg PreV'OUSW unknow_n landmarks
During the first map exploration phase, the tracking errarAotionSLAM with respect to the likelihood of reobserving a known
increases at a similar rate as for PDR. Then, after apprdglyna800m of landmark. It affects the number of incorrectly inserted

walking, the subject started to revisit locations and theking error decreased . .
10 less thari 2m. landmarks when action recognition errors occur and con-
sequently robustness of ActionSLAM. We performed a
parameter sweep with non-ideal action recognition and
found po = 0.1 to be the best choice in terms of
— Landmark positioning error maximizing robustness.
- - -Percentage of observed landmarks o Number of particles: For an ideal action recognition
system, ActionSLAM reliably converged with as few as
vorem e N, = 250 particles. For the7TOmin data stream, the
"""" average computation time for our Matlab implementation
of ActionSLAM on a Lenovo T410 laptop (2.66 GHz)
was 130.6s.

15

0.5
At C. Performance analysis with ideal action recognition

AN In Table IV we summarize the mapping and path accuracy
i ‘ ‘ ‘ results averaged over 10 runs with the parameters found
1'500 from the previous optimization and RBasic IMU setup. A
video showing one of these runs was uploaded to https:
Fig. 5. Percentage of identified landmarks (dashed greed)tla® mean //VImeo'Com/47293752' V_Ve rep_eated the analy_5|5 for_t_hesam
distance between the already identified landmarks and thesponding dataset but different starting points, therefore simngaslight
ground truth landmarks (solid blue_). The map error conﬁmly)dec_reas_e_s to yariations of the original scenario. ActionSLAM COﬂSiSig.'n
about0.51m. After 1180m of walking all landmarks have been identified. produced accurate maps and allowed tracking with accuracy
of 1.164+0.05m after initial map learning. The mean landmark
. . ositioning error wa$.46+0.04m and the posterior path mean
parameters. We OAp;tlmI_Zed the parameterS_ in terms of m%’?or().ﬁllio.ozlm. We assume that the ground truth errors due
path accuracy fori, given _that the algonthm convergedto inaccurate optical correction and tracking are in a simil
To account for.the probabilistic nature of ActlonS.LAM, Werange. ActionSLAM converged for all runs withV, = 250
avera_\ged tracking errors over 10 repeated analysis rurs V‘ﬂtarticles and was considered as robust in this scenario and
identical parameters. o with ideal action recognition.

The parameter optm_nzaﬂon results reported _subsequentlywe compared the ActionSLAM performance for different
were found for theBasic IMU setup and assuming perfeckensor setups to find an ideal trade-off between tracking
action recognition. For other sensor setups, similar ‘&lug.c,racy and system obtrusiveness. Figure 6 summarizes the
were found. Therefore_ we consistently use the listed valugsiin results for each sensor setup, again averaged over 10
throughout the evaluation. runs. We found that the performance in terms of mean tracking

« Prediction update: We performed a joint parametererror and map accuracy was similar for all setups, including

sweep foroy ando,, as well as an independent sweephe Foot-IMU-only setup. The similar performance is probably
for 0,. The analysis showed that ActionSLAM is nota consequence of the distance between landmark locations,
sensitive too; and we fixed it t00.01m. The optimal which was mostly significantly larger thady. In that case,
heading change parameters were found tarbe= 0.8° the additional type information of action landmarks was not

Mapping error [m] / Percentage

500 1'000
Walking distance [m]
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TABLE IV

PERFORMANCE AVERAGED OVERLO RUNS (ACTIONSLAM CONVERGED 45
FOR ALL RUNS). REPORTED NUMBERS ARE FOR Masic IMUSENSOR

SETUR 4
Analysis start [m] 0 200 400 3.5
Mean tracking error [m][ 1.18 £0.05 | 1.13+0.04 | 1.16 £0.07 3
Maximum tracking error| 3.09 £0.73 | 1.48 £0.15 | 1.524+0.23 =
[m] Eo2s
Posterior path mean 0.43+0.05 | 0.39£0.02 | 0.42+0.04 §
tracking error [m] o 2
Posterior path maximum 0.75 +0.17 | 0.524+0.07 | 0.55 £ 0.19 15
tracking error [m]
Mean landmark posi-{ 0.48 £0.05 | 0.44 +£0.02 | 0.46 +0.04 1
tioning error [m]
Number of erroneously 4.5 2 1.9 0.5
inserted landmarks

0 - . -
Foot IMU Multimodal Rich IMU Basic IMU Smartphone

necessary for landmark identification with an ideal actiolg . .
.. Ig. 6. Performance comparison for different sensor setopterms of
recognition SyStem-_ ) ) maximum ActionSLAM path error (left, blue), mean ActionSMApath error
In terms of maximum tracking errors, the simpBgnart- (middle, green) and posterior map accuracy (right, red)defgicted. SLAM

phonesetup and th&oot-IMU setup outperformed the sensor<onverged for all runs. For thigoot-IMU setup, actual action recognition was
performed (i.e. detection afot-moving, while ground truth labels were used

rif:.h settings. Thg reason for this is that simple action gecosyr the other setups. While the algorithm performed simfiar all sensor
nition systems distinguished fewer landmarks, but obskrveetups, the maximum tracking errors for simple setups waerlghen for

these landmarks more frequently. For example, the actidns Eensor-rich settings

E2 and R2 all took place at the same location (see Figure

2), but were considered as observations of three different

landmarks (with same location, but different type) in a sens often failed to converge. In Figure 7 we show the percentage

rich setup. For aSmartphonesetup, all these actions wereof ActionSLAM runs that failed as a function a¥,. As we

associated to a single landmark. Due to the more frequé&d observe, fo250 particles, the algorithm converged for less

observations, the algorithm converged faster and the m&@n%% of the runs. On the other side, even with more than

learning phase was shorter, which resulted in lower maximuti00 particles, there were still a few runs where ActionSLAM

errors. did not converge. This indicates that for some critical erro
This indicates that a simple, unobtrusive setup may be suffisertion patterns, ActionSLAM is not capable of recovgrin

cient for accurate and robust mapping of indoor environsienfusion with other modalities such as Wi-Fi might improve

In general, we expected simpler setups to fail if action® takobustness in such cases.

place at close (distance between landmarks smaller dppn  As for ideal action recognition, we analyzed the perfor-

but different locations. As an example, consider the actianance of different sensor setups (with identical confusian

landmarks of types WT and BB in Figure 2. A basic sensdfix). We found that incorrect landmark insertion has arsgyer

setup is not able to distinguish the two landmarks and miggffect on robustness for simple setups, most likely duertarer

introduce errors in the map due to incorrect data assoniatigprone data association. While robustness feoat IMU setup

For the experimental dataset, the analysis showed thawtiss was only77% with N,, = 250, it increased t@5% and90% for

not an issue with ideal action recognition. the SmartphonandBasic IMU setups. This confirms that the

L . - landmark type information helps to filter out incorrect aati
D. Performance analysis with action recognition errors

In the previous discussion we assumed an ideal action

recognition system and found that simple sensor setups are TABLE V
ﬂ:- . tfor rOb st and accurate traCk-n th ACtonSLAM PERFORMANCE ANALYSIS WITH ACTION RECOGNITION ERRORS
sufncien u u Ing wi ! AVERAGED OVER 100RUNS FORN,, = 250 AND 10 RUNS FOR

In this section we analyze the influence of non-ideal action Np = 2500.

recognition on ActionSLAM performance. Table V reports _

averaged results of an analysis with simulated action mieog Number of particles N 250 2500
Mean tracking error [m] 1.27+0.11 | 1.21 £0.09

tion errors (based on the confusion matrix in Table 1) and  yayimum tracking error [m] | 2.63 +0.62 | 2.30 + 0.56
a Basic IMU sensor setup. As expected we observed that Posterior path mean tracking 0.48 £ 0.14 | 0.43 & 0.07
many landmarks were added to the map due to insertion errors ~ rror [m] _

. . Posterior path maximun] 1.36 £ 0.88 | 0.82 +0.45
of action recognition. Most of these landmarks were only . cying error [m]
observed once during the experiment. By removing landmarks  Mean landmark positioning 0.70 +0.11 | 0.62 £ 0.10

from the map when they are not observed for a minimum time, ~ €rror [m]

. . . . . Number of erroneously in- 46 42
we could avoid this erroneous landmark insertion in future. serted landmarks
The main difficulty that arised as a consequence of action  Number of not-converged 15/100 1/10

recognition errors was that wittv, = 250, ActionSLAM analyses (not included abovg)



2012 International Conference on Indoor Positioning ardbém Navigation, 13-18 November 2012

Robustness [%)]
~ [e5] ©
e 2 =

D
o
T

o
o
T

Distance [m]
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Number of particles

Fig. 7. Percentage of converged ActionSLAM runs. Bgs < 500, 100
runs each were executed. Fdi, = 1000, we performed20 ActionSLAM
runs and forN, > 1000 10 ActionSLAM runs each.

observations and therefore is valuable for ActionSLAM. F¢  —5"
sensor-richer setups, no further improvement was observ
We concluded that &martphoneor a Basic IMU setup are

good trade-offs between system obtrusiveness and rolssstngig. 8.  Building layouts used for simulation of walks in gaiife with

5 -5 0 5
Distance [m]

although further evaluation is necessary. the overlayed posterior paths as found by ActionSLAM. Thialtevalking
distance was betweet76m for Scenario S2 and60m for S3, with the
VI. SYNTHETIC DATA ANALYSIS number of landmarks being betweéf (S2) and31 (S3). The same action

. . types as for the real dataset were distinguished.
A. Generation of synthetic IMU data

Many of the influences on algorithm performance can not

be tested with a single dataset. These include buildingutayoover all maps and ActionSLAM runs (for each map, results
number of landmarks, sequence of performed actions efigr 5 different action sequences an 10 ActionSLAM runs per
To generalize the results of our experiment, we developedhation sequence were taken into account) was + 0.42m,
simulation tool for generation of IMU signals from a buildin the mean posterior path error61 + 0.53m and the mean
layout and a sequence of activities. First, we fit a pathap accuracyd.55 + 0.43m, which is comparable to what
that corresponds to a pre-defined action sequence into i found for the real dataset. When action recognition srror
building layout. Location-related actions take place amifly were introduced, the robustness droppedi for Scenario
distributed within a radius 00.2m of pre-defined landmark S1, to85% for Scenarios S2 and S4 and stayed @Y% for
locations with the same action type. The resulting pathés thScenario S3. All these values were found fg5 = 500. As

divided into steps. Since ZUPT-PDR works as an integrategen previously, robustness improves when the particldoeum
in the stride phase and we assume purely additive noise, lgéncreased.

used a very basic approximation of step acceleration patter
as given in [28]. At turns, we added a single non-zero sample VIl. CONCLUSIONS ANDOUTLOOK
to the gyroscope signal with full heading change- AT - w.
IMU errors were added according to the sensor datasheetdn this work we presented ActionSLAM, a simultaneous
For the results presented here we used the error models I@$i@lization and mapping algorithm that makes use of locati
Xsens MTx sensors that are described in [29]. The validity &¢lated actions as landmarks in its internal represemtatfo
this simulation was confirmed by measuring the PDR erréte environment. We showed experimentally and by simwatin
accumulation, which turned out to be similar to the PDMypical action recognition systems that the algorithm isust
performance we obtained for preliminary recordings witbtfo towards errors in the recognition of such actions and capabl
mounted IMUs (in the range of 1% of the distance travele@f mapping the environment with mapping accuracy)dfm
mostly caused by heading drift). and path accuracy of.2m. We confirmed these findings
in simulated walking scenarios. By comparing the mapping
capabilities of different sensor setups we found that stmpl
A simulation-based analysis was done for four differersetups result in faster convergence of ActionSLAM compared
building layouts and action sequences inspired by dady s to sensor-rich action recognition systems while offeriingjlar
can be seen from Figure 8, the ActionSLAM posterior patimapping accuracy. This may however come at the cost of
accurately reflects the building layout in all scenariose THower robustness. Preliminary results suggest thzdsic IMU
mean ActionSLAM path error for Basic IMU setup averaged setup consisting of two motion sensors attached to the fubt a

B. Building layout analysis
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the wrist and a smartphone in the trouser pocket may achiey@® H. Junker, O. Amft, P. Lukowicz, and G. Tréster, “Gestigpotting with
sufficient robustness while being unobtrusive to the user.
Typical application scenarios of ActionSLAM will be in [9]
ambient-assisted living, home rehabilitation and persam-m
itoring both at home and in office or manufacturing en-
vironments. ActionSLAM may be applied in any scenariﬂo]
where users repeatedly perform location-related actiatts w
out walking long distances in between. Due to the lo
computational requirements (only as fewl@$0 particles are
required for robust mapping, compared>*010000 particles
in FastSLAM [24]), ActionSLAM is also well suited for
real-time implementation on a smartphone. To achieve Inigl'[f,z]
robustness, the algorithm could be extended in various ways
for example by fusion with other modalities such as Wi-Fi d3l
deployed switches in the environment.

[14
In future we will deploy and test ActionSLAM in real

world, with state-of-the-art action recognition integrt We
will furthermore apply methods for tracking with unknowa5]
starting position in previously built maps, so that maps can

be reused whenever a building is revisited. The particlerfilt

I8

approach is well-suited for this task, as it can generate a[r%g]
track particles with different starting positions at ialization.

GPS may be used for anchoring of multiple indoor maps
global coordinates. Specifically, we will use ActionSLAM t

support assistance of persons with Parkinson’s diseaseiat t

home. In this context, analyzing gait and limb movements

required to assess efficacy of physical training and drubs T

0
17]

i)

is assessed by wearable sensors deployed on the feet, trdnk a
limb extremities. ActionSLAM will be used to provide use
location “for free” from this existing sensor configuration
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