
2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Indoor localization with UMTS compared to WLAN
Ulrich Birkel, Mark Weber

TH Mittelhessen
Dep. of Electrical Eng.

Giessen, Germany
ulrich.birkel@ei.thm.de, mark.weber@ei.thm.de

Abstract—The objective of this paper is to compare the
accuracy in location estimation which can be achieved in an
indoor-scenario for WLAN and UMTS using RF-Fingerprinting
with various metrics and distance norms.

The measurements were done in a 20 m x 15 m office environ-
ment, using 4 3G Small Cells (Home NodeB) and 4 WLAN-APs.
To create the radio map, fingerprints were taken within a grid
of one meter. For location estimation a deterministic approach
using Euclidean Distance norm with a WKNN algorithm was
used based on RSS and AP-visibility as metrics. As a probabilistic
approach a histogram comparison method has been applied using
Kullback-Leibler-Divergence as a distance norm.

It can be shown, that the accuracy in Indoor-RF-
Fingerprinting with UMTS is comparable to the accuracy, which
can be achieved in a similar WLAN-Testbed. Signal visibility is
an alternative metric to RSS for interference limited systems,
such as UMTS.

As a conclusion UMTS Small Cells are an interesting alterna-
tive to WLAN for indoor RF-Fingerprinting, especially because
the same hardware can be used for traffic and for localization
purposes, since the pilot is not subjected to adaptive frequency
hopping or power control, as it is the case in most WLAN
installations for interference reduction.

I. INTRODUCTION

RF-Fingerprinting for indoor localization has frequently
been investigated in wireless systems such as WLAN [1], [2].
RF-Fingerprinting in cellular systems such as GSM or UMTS
has rather been analyzed in outdoor environments to support
poor GPS signals [3]. With the availability of Small Cells for
indoor coverage, UMTS based RF-Fingerprinting could be an
alternative or complementary to a WLAN based solution using
smartphones to display location information.

UMTS Small Cells have already been used for indoor local-
ization in related works using a Rake Estimator, which carries
out correlation of the received signal with delayed paths [4].
However these TOA based channel estimators suffer from
noise and near-far effects, yielding in localization accuracies
above room level [5]. With WLAN RF-Fingerprinting better
accuracies below room level can be achieved [6]. It is therefore
the objective of this work to elaborate if these results can also
be achieved, when using Fingerprinting with Small Cells in
UMTS-FDD mode.

Since UMTS bandwidth is only 5 MHz compared to
20 MHz in case of WLAN, more significant small-scale fading
can be expected. Furthermore UMTS is an interference limited
system and accordingly the fingerprints of distant neighbor
cells have not the same visibility as in a comparable WLAN
installation. On the other hand UMTS cellular phones are

using a Rake-Receiver, which takes advantage from multipath
propagation and radio measurement reports are updated more
frequently when the UE is in ”connected mode”. These aspects
motivated us to analyze more deeply the performance of indoor
RF-Fingerprinting using UMTS Small Cells.

In this work, we are comparing the performance of UMTS
versus WLAN in a 20 m x 15 m office environment using
4 Small Cells and 4 WLAN-APs. Fingerprints have been
taken within a grid of 1 m using AP visibility and RSS as a
metric. For the metric visibility a threshold had to be calibrated
in order to optimize the performance. As a deterministic
distance norm we used the Euclidean distance, while we were
using a histogram comparison method with KL Divergence
as a stochastic norm, as already proposed in [2] and [7]. In
both cases a weighted k nearest neighbor algorithm (WKNN)
was applied for position estimation. Since the measurements
were taken under static conditions no further filtering such as
Kalman Filter was necessary.

In Chapter II the methods to estimate the position of the
mobile client are described by specifying the metrics, distance
norms and algorithms which have been used. Chapter III
gives an overview on the experimental setup, presenting the
hardware for the UMTS and WLAN testbed as well as the
WIPoS Toolchain, which has been used for the analysis.
The measurements and results are shown and discussed in
chapter IV. Chapter V summarizes the results, conclusions and
provides an outlook to our future work.

II. LOCATION ESTIMATION METHODS

The user’s position is estimated during the online phase by
comparing a measured location dependent metric to a previous
calibrated radio-map. This radio-map contains the so called
Fingerprints at predefined calibration points, which need to be
collected for a specific period of time depending on the update
rate of the metric. The calibration points, whose metrics have
the smallest distance to the current measurement, are used to
estimate the position.

The metrics, distance norms and localization method which
has been used in this work for position estimation are de-
scribed in the following subsections.

A. Metrics: RSS and AP visibility

1) RSS: received signal strengths: The received signal
strength (RSS) is the most common metric used for RF-
Fingerprinting. In case of WLAN, the downlink RSS finger-
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(a) WLAN Visibility Ant7 (APth = −55 dBm) (b) UMTS Visibility SC20 (APth = −80 dBm)

Fig. 1. AP and SC coverage probability in [%] based on visibility metric

prints of the beacon were collected using passive scanning
mode: Even though the beacon interval of the WLAN AP
is 100msec, most Network Interface Cards (NIC) update the
measured RSS only every 2s to 6s, because all channels are
scanned consecutively in passive scanning mode [8].

UMTS measurement reports and thus updated CPICH RSCP
fingerprints of visible Small Cells were available every 100ms
(connected mode), when using a commercial UMTS Tracemo-
bile.

In both cases the k minimum distances between
the observed signal strength (RSS) vector si =[
s1 s2 · · · sn

]
and the RSS vector in the radio-

map Si =
[
S1 S2 · · · Sn

]
were computed by using the

distance norms as described in subsection B.
Note: For a better readability we will use in the following

sections the terms RSS (received signal strength) and AP
(Access Point) instead of CPICH RSCP (received signal code
power of the common pilot channel) and Small Cell also for
UMTS.

2) AP visibility: We propose a metric, which is defined as
the visibility of an AP in percent, when measuring a predefined
amount of RSS samples. The decision if an AP is visible or
not is defined by a calibrated threshold APth which turned out
to be −55 dBm for WiFi and −80 dBm for UMTS giving the
best position estimates. Accordingly AP visibility is defined
as the local coverage propability

Pcov = prob(si > APth) (1)

as shown in figure 1. Pcov = 80% means, that 80% of
the measured RSS samples were larger than the calibrated
threshold of −55 dBm (figure 1(a)). A similar metric has
already been used in [7].

B. Distance-Norms: Deterministic and Probabilistic Approach

1) Deterministic Approach: As a deterministic distance
norm the Euclidean norm was used to calculate the k minimum
signal distances between two vectors. Depending of the metric,

the vectors either describe mean signal strengths (RSS) or AP
availability in percent. This norm dq is defined accordingly by

dq =

(
n∑

i=1

|si − Si|q
) 1

q

(2)

with q = 2 [2].
2) Probabilistic Approach: Instead of taking the means out

of several signal strength values, the probability distributions
of the received signal strength can be compared by using
the Kullback-Leibler (KL) divergence as a stochastic density
distance measure. For probability distributions ”P” and ”Q”
of a discrete random variable (RSS values of APs) their KL-
divergence is defined to be

DKL(P‖Q) =
∑
i

P (i) ln
P (i)

Q(i)
(3)

where P represents the reference distribution of data P = Si

(collected during the offline phase). The measure Q represents
the observed data at a unknown location (Q = si). To avoid
taking logarithms of zero-valued bins, we added a small
constant term of 10−6 as already proposed in [7]. Since the
K-L Divergence is not symmetric the symmetrized Kullback-
Leibler divergence DKL,sym between the two distributions Si

and si has been used, which is defined as

DKL,sym(Si, si) = DKL(Si‖si) +DKL(si‖Si) (4)

With p = P (S|{x, y}) expressing the RSS distribution at each
position in the reference database and qu = Q(s|{xu, yu}) the
RSS distribution of an unknown position we therefore have
for any two locations {x, y} and {xu, yu} and for J access
points [7]:

D(p, qu) =

J∑
j=1

DKL,sym(Pj(S|{x, y}), Qj(s|{xu, yu})) (5)

To encode the RSS distributions we used a bin size of 5 dB.
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Fig. 2. WLAN and UMTS setup

C. Localization Method

For the position estimates the weighted K-Nearest-Neighbor
algorithm (WKNN) [2], [9] was used. The neighbors are
computed by finding the k minimum signal distances by
using the metrics and distance norms as described above.
Because the measurements have been performed under static
conditions, no further filtering such as Kalman filter was used.

III. EXPERIMENTAL SETUP

A. WLAN and UMTS Setup

For the testbed an area of 20 m x 15 m was selected in a
public building of the university campus. 4 WLAN-APs and
4 Small Cells were installed onto the ceiling (figure 2). The
4 WLAN APs (Ant6 to Ant 9) were commercially available
access points (Linksys WRT54GL) with a specific firmware
(OpenWRT) operating on the same channel (channel 13,
2472 MHz) with an antenna gain of 2 dBi and transmitting
power of 20 dBm (figure2).

The 4 UMTS Small Cells (SC20 - SC23) were installed
at the same positions as the WLAN APs, operating in FDD
mode at a frequency of 2127.6 MHz, using an antenna gain
of 2 dBi and transmitting power of 20 dBm.

B. Calibration and Measurements

In order to create the radio map, 150 reference points have
been selected within the defined area in a grid of 1 m storing
100 RSS samples at each position for WLAN and UMTS
during the offline phase.

As a WLAN client a laptop using a Orinoco Gold Card
with an external antenna has been used. In order to create the
radiomap and to visualize the position of the WLAN client
in real time a software called WIPoS.NET was developed
(figure 3).

As a UMTS client a Qualcomm UMTS Test Mobile
TM6250 has been used. The RSCP samples were recoreded
using the Rohde&Schwarz Romes Drive Test Tool ROMES
(figure 3).

(a) WLAN setup

(b) UMTS setup

Fig. 3. WIPoS Tool chain

All measurement data has been exported from ROMES and
WIPoS into Matlab for post processing. These tools constitute
a powerful tool-chain, which provides an efficient possibility to
compare measurements scenarios based on various algorithms.
It furthermore provides comfortable visualization outputs such
as animation or PDF/CDF of meter error [10].

IV. RESULTS AND DISCUSSION

A. WLAN compared to UMTS

Figures 4 and 5 show the CDFs of the accuracies in meter
achieved in case of WLAN and UMTS using the following
metrics and norms:

• Euclidian distance norm (WLANEuclid,UMTSEuclid)
based on RSS metric and WKNN algorithm (k = 4)

• KL divergence norm (WLANKL,UMTSKL) based on
RSS metric and WKNN algorithm (k = 4)

• Euclidian distance norm based on visibility metric
(WLANV isibility,UMTSV isibility) with WKNN norm
(k = 4)
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Fig. 4. Accuracies using various metrics & norms for WLAN
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Fig. 5. Accuracies using various metrics & norms for UMTS

As we can see in figure 4, Euclidian distance and KL
divergence are outperforming the visibility metric slightly in
case of WLAN. Because the visibility threshold needs to be
calibrated the RSS based metric is the recommended approach
for WLAN localization in order to avoid this additional effort.

The results for UMTS are given in figure 5: At 80% con-
fidence level, Euclidian distance is outperforming KL diver-
gence, on the other hand at 50% confidence levels we achieve
better accuracies using KL divergence. Similar results are also
achieved when using the visibility metric. Accordingly, in case
of UMTS visibility is an alternative metric to RSS based RF-
Fingerprinting.

The accuracies achieved in WLAN figure 4 are also similar
to the accuracies in case of UMTS figure 5: In both cases
a mean localization accuracy of approx. 2 m- 4 m has been
achieved, while at 80% confidence level, the accuracy is
slightly better in case of WLAN.

B. Impact of RSS update rate

While for the calibration of the radio map 100 samples have
been taken per location within a grid of 1 m throughout the
building, the position estimates during the online phase have
been done taking the mean level out of a variable amount of
samples.

In our case the WLAN NICs typically update the RSS sam-
ples every 2 to 6 seconds in passive scanning mode [8], even
though the WLAN beacon is transmitted every 100ms. Pilot
level updates in case of UMTS are reported approximately ev-
ery 100 ms when the UE is in ”connected mode”. Considering
a pedestrian speed of 0.5 m/s, we have accordingly 20 level
updates per meter in case of UMTS, while we only have max.
one valid RSS update every meter in case of WLAN, when
moving at the same speed.

Table I summarizes the accuracies [m] achieved at 80%
confidence level, comparing WLAN versus UMTS in case of a
RSS based metric using Euclidian distance and KL divergence
as distance norms with a variable amount of samples for
position estimation. It can be shown, that almost independent
from this amount (1 to 100), a similar accuracy for Euclidian
distance and KL Divergence can be achieved in case of WLAN
or UMTS.

Accordingly a higher sampling rate had no further impact
on the accuracy as long as the measurements are taken
under static conditions. The reason for this, is that the RSS
fingerprints remain relatively stable per location in case of
WLAN and UMTS. In both cases the signal level standard
deviation was typically in the range of 2 dB to 4 dB (figure6).

In dynamic scenarios, when filter techniques such as
Kalman are applied, the higher availability of RSS samples
could be beneficial, allowing higher accuracies, especially if
the mobile clients are moving at higher speeds. This aspect
needs to be further investigated.

TABLE I
WLAN/UMTS ACCURACIES [METER] AT 80% CONFIDENCE LEVEL WITH
KL/EUCLID NORM, RSS METRIC AND VARIABLE AMOUNT OF SAMPLES

#Samples 100 50 20 10 5 1
WLAN KL [m] 4.95 4.4 5.1 4.9 4.48 5.6
UMTS KL [m] 7,25 6.7 7.01 7.04 6.3 6
WLAN Euclid [m] 4.86 4.5 5.12 4.7 4.6 5.18
UMTS Euclid [m] 5.26 5.2 4.66 4.44 4.4 5.79

Comparing the accuracies achieved, when using WLAN and
UMTS at 80% confidence level, the conclusions from subsec-
tion IV-A are confirmed also in the measurements (table I). In
both cases we achieve approx. 5 m at 80% confidence level,
almost independent from the amount of samples, if Euclidean
distance is used as a metric. If KL Divergence is used as a
distance norm, we can see, that the accuracy in case of WLAN
is slightly better (5 m) than it is in case of UMTS (7 m) at
80%.

C. Visibility metric and calibrated threshold

Table II summarizes the results by giving the accuracy
achieved at 80% confidence level, comparing WLAN versus
UMTS in case of visibility metric using various visibility
thresholds. A visibility threshold is defined as the min. power
level required to consider the measurement of the WLAN
Beacon or Pilot RSCP as available (chapter II).
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Fig. 6. PDF of RSS fingerprints of WLAN and UMTS

TABLE II
WLAN/UMTS ACCURACIES [METER] USING WKNN AND VISIBILITY

METRIC WITH VARIABLE VISIBILITY THRESHOLDS

Vis. Thres.[dBm] -85 -80 -75 -65 -60 -55 -50
WLAN [m] 11.8 11.9 9.67 6.3 6.3 5.5 6.2
UMTS [m] 6.19 5.9 13.5 13.9 13.9 - -

We can conclude from table II, that the visibility threshold
needs to be optimized. While we achieve a high visibility
granularity in case of UMTS at −80 dBm Pilot level, the
granularity becomes more significant in case of WLAN at
approx. −55 dBm. In both cases we achieve an accuracy,
which is comparable to the accuracies we achieved with RSS
based position estimates (5.5 m-6 m). Note that other visibility
thresholds lead to lower accuracies (table II).

As can be shown in figure 1, the calibrated visibility
threshold leads to a location dependent visibility allowing to
use the proposed metric according equation 1 for localization
purposes.

V. SUMMARY AND CONCLUSION

Based on the results given in the previous chapter it can
be concluded, that similar accuracies are achieved with RF-
Fingerprinting, when using UMTS Small Cells or WLAN
Access Points. In both cases the accuracy is in between 5 m
and 7 m at 80% confidence level, almost independent from the
metric (RSS or visibility), distance norm (Euclidian distance
or KL Divergence) or the amount of samples taken during the
online phase.

In case of UMTS a valid pilot level is available every
100 ms (connected mode), while in case of WLAN the RSS
value is typically updated only every 2 s to 6 s in passive
scanning mode. However, under static conditions during the
online phase we do not benefit from this higher sampling rate
in terms of accuracy. On the other hand the calibration effort
is reduced in case of UMTS compared to WLAN, since we
can reduce the measurement time during calibration.

If WLAN fingerprinting is applied in public buildings it is
recommended to use additional Access Points for localization
purposes, which are not using power control or adaptive
frequency hopping for interference reduction. In UMTS the
same Small Cells can be used for traffic and localization
proposes, since the Pilot level is not affected by power control
or frequency hopping. This reduces the installation effort
and makes RF-Fingerprinting with UMTS Small Cells an
interesting alternative.

A visibility metric Pcov[%] has been proposed as an
alternative to RSS based localization (eq. 1). If AP or Pilot
visibility is used as a metric, a visibility threshold needs to
be calibrated in order to optimize the performance. Since the
accuracy is not improved compared to RSS measurements,
it is not the recommended approach in order to avoid this
additional effort.

It can therefore be concluded, that RF Fingerprinting using
UMTS Small Cells is an alternative to WLAN based Fin-
gerprinting, leading to similar accuracies and requiring less
installation and calibration effort.

In a future work it is planned to analyze the performance
in case of UMTS under dynamic conditions using additional
filter techniques. Furthermore it is planed to investigate the
accuracies, which can be achieved using a hybrid localization
approach, taking advantage from the availability of WLAN
and UMTS in todays smartphones.
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