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Abstract—We present a visual odometry system for indoor
navigation with a focus on long-term robustness and consistency.
As our work is targeting mobile phones, we employ monocular
SLAM to jointly estimate a local map and the device’s trajectory.
We specifically address the problem of estimating the scale factor
of both, the map and the trajectory. State-of-the-art solutions
approach this problem with an Extended Kalman Filter (EKF),
which estimates the scale by fusing inertial and visual data, but
strongly relies on good initialization and takes time to converge.
Each visual tracking failure introduces a new arbitrary scale
factor, forcing the filter to re-converge. We propose a fast and
robust method for scale initialization that exploits basic geometric
properties of the learned local map. Using random projections, we
efficiently compute geometric properties from the feature point
cloud produced by the visual SLAM system. From these prop-
erties (e.g., corridor width or height) we estimate scale changes
caused by tracking failures and update the EKF accordingly.
As a result, previously achieved convergence is preserved despite
re-initializations of the map. To minimize the time required to
continue tracking after failure, we perform recovery and re-
initialization in parallel. This increases the time available for
recovery and hence the likelihood for success, thus allowing
almost seamless tracking. Moreover, fewer re-initializations are
necessary. We evaluate our approach using extensive and diverse
indoor datasets. Results demonstrate that errors and convergence
times for scale estimation are considerably reduced, thus ensuring
consistent and accurate scale estimation. This enables long-term
odometry despite of tracking failures which are inevitable in
realistic scenarios.

I. INTRODUCTION

The ability to retrieve a user’s location represents a funda-
mental enabling technology for a wide range of applications,
above all, navigation. In contrast to outdoor scenarios, where
GPS is established as the universal solution, indoors, no such
standard exists as of today.

Indoor positioning methods comprise a wide variety of
technologies [1]], [2]. An overview on vision-based approaches
can be found in comprehensive surveys of recent 3] and older
systems [4]. Active systems rely on a priori knowledge about
the environment, such as a building model, reference images
or fiducial markers [3], [6]. Passive systems, in contrast, are
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localized using pre-installed hardware, e.g., by multiple fixed
cameras [7]].

Since passive localization does not scale well for large
environments, active systems need to be employed. In order to
improve localization accuracy, the relative movement between
reference points (i.e. where absolute location estimation is
possible) can be estimated using odometry. To this end, dif-
ferent solutions have been provided, ranging from pedometers
[8] and inertial sensors [9] to tracking using monocular or
stereo cameras [[10]], or a combination of multiple techniques
[11]]. Camera-based (visual) odometry can be understood as
a special case of visual SLAM (Simultaneous Localization
and Mapping). SLAM refers to the problem of estimating the
pose of a robot in an initially unknown environment, while
at the same time building a map of the environment. Visual
odometry does not aim at creating a globally consistent map
of the environment, but uses local maps instead.

A. Related Work

In this paper, we concentrate on the special case of monoc-
ular SLAM, where images from a single camera are used
for localization and mapping. In order to compute depth
information, salient image points are tracked over time while
the camera is in motion. Due to the projective nature of a
camera, the depth can be determined only up to scale, i.e.,
the unit is unknown and has to be estimated by other means.
Further, if no reference data is available to fix the scale, a
problem called scale drift arises, where the scale is not only
unknown, but deviates over time. Recent work like Strasdat et
al. [12]] models the scale in the state vector of a Kalman Filter
and corrects the scale drift when loop closures are detected.
The same formulation allows for the propagation of the metric
scale over the map as soon as the scale factor is known.

Various approaches to resolve the scale ambiguity and to
establish a metric coordinate system have been proposed. For
example, Davison et al. [13] add a calibration object with
known size to the scene, or Munguia et al. [14]] require manual
selection of three scene points with known distance. Likewise,
if objects with known size can be identified, they can be used
to determine the metric scale. In this paper, we follow the
latter approach and propose to estimate the (non-metric) size
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of corridors from point clouds and relate it to the (metric) size
determined from a building model, where available.

When no information about the physical dimensions of the
scene is available (e.g., through a building model along with a
coarse position estimate), the metric scale is obtained by fusing
inertial measurements from accelerometers and gyroscopes
with visual data. There is a huge body of previous work on
visual-inertial data fusion (an introduction is given by Corke
et al. [15]]). Most researchers focus on improving the accuracy
of pose estimates, e.g., by disambiguating translational and
rotational motion which is difficult using visual information
only, or by stabilizing inertial measurements which are prone
to drift by adding visual information. Furthermore, the rela-
tive pose between camera and inertial sensors can be auto-
calibrated, and a more robust estimate of the gravity vector
can be obtained [16]].

More recent work exploits inertial data to perform metric
reconstruction, i.e., the unknown visual scale is determined
by incorporating inertial measurements [17], [[18]. Kneip et
al. describe an approach of this nature in [19]]. They analyze
delta-velocities obtained from both visual pose estimates and
inertial measurements to solve for the unknown scale factor.

B. Contributions

While this technique allows estimation of scale, it strongly
relies on a good initialization of the filter and takes time
to converge. Until convergence of the filter, the odometry
estimates are of limited use. Inaccurate initialization prolongs
this phase or may even result in divergence. In realistic
indoor scenarios, visual tracking is likely to fail frequently
as buildings often exhibit sparse or ambiguous texture. As a
result, re-initialization of the map becomes necessary, which
introduces an unknown new scale.

We perform recovery and re-initialization in parallel. This
increases the time available for recovery and hence the likeli-
hood for success. At the same time, tracking interruptions are
minimized and fewer re-initializations are required.

Further, we propose a fast and robust method for scale
initialization that exploits basic geometric properties of the
learned local map. Using random projections, we efficiently
compute geometric properties from the feature point cloud
produced by the visual SLAM system. Since these properties,
e.g., hallway width or height, remain locally constant, the scale
ratio between consecutive maps can be determined to recover
the scale estimate before re-initialization. Thus, the correct
scale is preserved given that the filter has converged once
(possibly over several re-initializations).

The remainder of this paper is structured as follows: In
Section we introduce the parallel tracking and mapping
algorithm our approach is based on, while Section [III| explains
the parallelization of recovery from a tracking failure and re-
initialization of a new map. In Section we discuss the ro-
bust estimation of relative scale changes between consecutive
maps based on geometric building properties, and augment
a Kalman Filter by directly feeding these estimates into its

state update in case of a map re-initialization. In Section [V]
we describe the proposed efficient extraction of a room’s
dimensions from the point cloud produced by the visual SLAM
system, and Section [VI| presents an evaluation of the proposed
methods. The experiments demonstrate that our approach can
reduce the number of re-initializations and tracking failures
compared to traditional parallel tracking and mapping, and that
our system aids in estimating the scale between local maps.

II. MONOCULAR VISUAL ODOMETRY

We use Parallel Tracking and Mapping (PTAM) by Klein
and Murray [20]] as the basis of our monocular visual odometry
system. In contrast to conventional SLAM algorithms, PTAM
separates the tracking of image features for pose updates
from the mapping part, where trackable features are collected
to build a three-dimensional map of the local environment.
This allows for an update of the camera pose at frame-
rate, while expensive optimization techniques for the mapping
can be executed at a lower rate and when computational
resources are available. As a result, PTAM is eligible for
mobile applications, whereas conventional SLAM approaches
are prohibitively expensive due to their (at least) quadratic
complexity in the number of observations.

A. Parallel Tracking and Mapping

PTAM detects feature points in the camera image using the
FAST [21]] keypoint detector. Observations in the current frame
are associated with those in the previous frame by the tracking
routine which performs an epipolar search and patch-based
cross-correlation. The successful feature associations are used
to compute the new 6D pose for the current frame. An m-
estimator with outlier rejection further increases robustness.

The mapping part of PTAM operates keyframe-based, i.e.,
whenever a frame contains a large number of new observations
that have been tracked, it is inserted into the map. Hence, every
feature is stored within a keyframe and the map comprises a
sparse set of keyframes. This allows for the use of bundle
adjustment to jointly optimize the three-dimensional positions
of observations and the six-dimensional poses of keyframes.
The optimized 3D positions of the features are, in turn, used
during tracking for subsequent pose updates.

The initialization of the map is performed using the 5-point
algorithm [22] on a pair of images at the beginning of the
sequence. A set of features from the first image is tracked
over several frames in order to generate the required baseline.
As this step assumes a non-zero camera velocity, it may have
to be repeated until a map is successfully instantiated.

B. Discussion of PTAM

PTAM provides a robust basis for a monocular visual
odometry system running on mobile devices. The structure
of the algorithm leads to comparatively low computational
complexity while generating accurate position and orientation
estimates with fairly small errors due to drift. However, an
inherent disadvantage of monocular sensor systems is the
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inability to observe the true scale of position data relative to
a metric coordinate system.

To enable anytime localization and navigation in indoor
environments, it is therefore necessary to include additional
information in order to scale the visual odometry to metric
coordinates. We propose to use basic geometric properties of
the surrounding building structure to retrieve the unknown
scale factor, exploiting the fact that PTAM already estimates
the 3D structure of the local environment.

Further challenges are rapid movements of either the camera
or objects in the scene that cause motion blur and thus
decimate the number of visible features to a degree that the
system loses tracking. PTAM incorporates a basic recovery
mechanism, i.e., it stops adding new keyframes to the map
when tracking quality is considered poor and tries to match
the scene with previous keyframes instead. However, recovery
takes time and might only make sense in some cases, for
instance, when large objects occlude the camera only tem-
porarily (e.g., opening doors, people walking by). By contrast,
if also the camera has moved in the meantime, it is unlikely
that recovery succeeds. Here, it would be beneficial to create a
new map immediately in order not to lose time with recovery
and reduce the non-tracking time.

III. INSTANTANEOUS RECOVERY FROM
TRACKING FAILURES

A. Autonomous Operation

In large-scale, real-world environments, it can occur that the
available features are not sufficient for tracking. In this case,
PTAM’s recovery implementation fails with high probability.
If the user moves away from the existing map, PTAM gets
locked in an infinite loop as it is not able to find the current
video frame’s features in the map. Since we are interested
in odometry, it is not a conceptual problem that tracking is
only possible in local maps. However, the creation of a new
map requires an initialization based on a stereo pair, using
the 5-point algorithm [23]. For this, a candidate stereo pair
is chosen autonomously and, if insufficient feature correspon-
dences were found and no map can be created, the procedure
is repeated until the initialization is successful.

B. Parallel Recovery and Re-Initialization

In Sec.|lIL we discussed the problems of PTAM with relation
to rapid movement caused, for instance, by persons in the
scene or quick camera motion, which is likely to occur with
a handheld device. In order to make the system more robust
with respect to occlusions and moving objects, we propose a
combined approach of recovery and re-initialization, using the
following basic principle:

¢ As soon as the system is no longer able to detect enough
features for tracking (e.g., because of an obstacle), it
enters recovery mode. At the same time, initialization of
a new map is started in the background.

o If the system cannot recover quickly, it switches to the
newly initialized map, so that it can immediately continue
with tracking.

o If recovery is successful (e.g., when the obstacle disap-
pears and the previous features become visible again), the
newly initialized map is discarded and tracking continues
with the old map.

To realize this functionality, two tracker threads are used,
which will in the following be referred to as T1 and T2 (see
Fig. [I). In the normal state, only T1 is active while T2 sleeps,
which is symbolized by a continuous and a dotted line in
Fig. As soon as tracking is interrupted (the tracker enters
the Lost state), T1 sends a wake signal to T2 (Fig. [I(b)). T2
now starts a new stereo initialization and attempts to create
a new map. At the same time, T1 enters recovery mode and
tries to estimate the camera pose in all existing keyframes
(Fig. [I(c)). Depending on the success of the recovery step,
the system can proceed in two different ways. If T2 created a
new map before recovery in T1 succeeded (case 1, Fig. [I(d)),
T2 sends a sleep signal to T1 and tracking continues with the
newly created map. The original map is discarded, but since
we are interested in relative positioning, we do not require that
we can resume tracking in the old map if we ever come back to
that location. If the recovery in T1 succeeded before T2 created
the new map (Fig. [I(e)), tracking continues with T1, and the
creation of the new map is interrupted. This corresponds to
the ‘original’ single-tracker behavior, since the second map is
not used.

When comparing these two alternatives presented in
Fig. [I(d)] and Fig. the latter one is preferential, since we
want to use one single map as long as possible to avoid re-
initializations (and thereby scale loss). Therefore, the original
tracker (here T1) is prioritized over the second initialization.
At the time when T2 has built its new map and continues
tracking, it sends the sleep signal to T1 with a grace period
parameter (set to four seconds). During this grace period,
T1 has time to pursue recovery, as shown in Fig. [I(e)} If it
succeeds, the system switches back to T1 and discards the
newly created map of T2 (including the features and keyframes
that already might have been added to it). If T1 was not able
to recover within the grace period, it is finally suspended and
its map is deleted.

In case of a tracking failure, this solution is able to follow
up tracking quickly, since re-initialization starts immediately
after entering the lost state. This is particularly important for
longer periods of motion where recovery is likely to fail. When
the obstacle disappears within the grace period, the system is
able to recover almost instantly, since only a switch to the
previous tracker thread is required.

IV. SCALE ESTIMATION BASED ON BUILDING GEOMETRY

For most buildings, geometric properties such as height,
width, and length of a room or corridor remain locally constant
until interrupted or ended by another part of the building.
Especially in public buildings (e.g., hospitals, universities,
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(c) While T1 tries to recover, T2 initializes a new
map.

Thread | Lost  Trying to recover Sleeping
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(f) In an extended version, a grace period is
added for T1 to recover. Even if T2 is already

new map is discarded.

Fig. 1.

administration buildings), this assumption is mostly valid. We
observe that these properties are usually defined as the distance
between opposite dominant planes within the interior building
structure. We demonstrate in the following how properties of
this kind can be estimated efficiently and used to aid in scale
estimation for monocular visual odometry.

In general, there are two scenarios to distinguish: One where
there is no prior knowledge available, and one where the true
building dimensions are known a priori (e.g., from a floor
plan or an initial survey). In both cases, geometric properties
provide valuable information to improve scale estimation.

A. Case 1: Unknown Building Dimensions

In the general case, information on the dimensions of rooms
and corridors is not available and the standard approach to
scale estimation is the incorporation of inertial measurements
using a Kalman Filter [11]]. The filter takes metric acceleration
and angular velocity readings as input and propagates a
kinematic model to infer metric position and orientation of
the device for each time step. These predictions are correlated
with scaled position data as provided by the monocular visual
odometry algorithm. This way, the scale factor is estimated in
real-time as part of the filter’s state vector and even occasional
scale drift can be accommodated for.

The estimation process takes time to converge, though, and
its duration depends to a great degree on the accuracy of
the initialization of the filter state. As long as convergence
is incomplete, the visual odometry data are not reliable.
Therefore, it is important that this phase takes as little time as
possible and occurs only once at the beginning of operation. In
real indoor environments, however, frequent challenges occur
for a vision-based system such as dynamic objects and sparsely
textured regions as explained in the introduction. PTAM is no
exception in this context and relies strongly on the presence
of a sufficient number of features to track in order to deliver

tracking with the new map, T1 still has time to
recover.

Schematic overview of the parallel tracker implementation for increased robustness to moving objects.

contiguous pose updates. If this is not the case and recovery
methods as described in Sec. fail, a new map has to be
initialized from a new pair of images. Again, due to the
arbitrary baseline, the scale of the map is unknown and most
likely different from the one before the tracking failure. This
entails that the Kalman Filter has to start over and so far
achieved convergence is lost. In the worst case, this happens
repeatedly with the result that convergence of the filter and
thus scale estimation become impossible.

We exploit the observation that local building geometry can
be assumed constant to alleviate the effect of frequent failures
of the visual odometry system. We estimate properties such as
corridor height while the Kalman filter converges. In case a
new map needs to be initialized, a simple comparison of those
properties to the estimates from before the re-initialization
allows us to directly compute the scale factor between the
current and the previous map. This factor is multiplied to the
Kalman Filter’s scale variable which, therefore, remains unaf-
fected by the re-initialization of the local map and previously
completed convergence is not lost.

B. Case 2: A Priori Known Building Dimensions

For certain buildings, it is possible to extract information
on basic dimensions of rooms and corridors in advance, for
instance, from floor plans or by conducting an initial survey.
Once the true width of, e.g., a corridor is known, a direct
comparison with the estimated width in the vision coordinate
system reveals the scale factor between the visual odometry
and metric coordinates. Thus, the odometry data become at
once useful for navigation and other location-based services.

In this scenario, the mobile device requires a very coarse
estimate of its absolute position within the building to identify
the current room or corridor. Existing mobile localization
approaches based on Wi-Fi using fingerprinting have been
demonstrated to achieve room-accurate positioning while sub-
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Fig. 2.  Top: A frame with feature points that are tracked by PTAM. The
color of a point indicates the size of the feature in the image. Bottom: The
corresponding three-dimensional point cloud as it appears in the reconstructed
map. The 3D positions of the points are very noisy. The estimated ground
plane is indicated by the grid lines.

meter accuracy still remains out of reach [24]]. Likewise,
systems that employ content-based image retrieval have been
shown to yield accuracies at meter-level but are unable to pro-
duce contiguous pose information for the mobile device [25]].
Both approaches complement each other and enable direct
scale computation using known geometric building properties.
This way, the sub-meter accurate visual odometry readings
become available and no convergence behavior needs to be
taken into consideration.

V. ESTIMATION OF GEOMETRIC BUILDING PROPERTIES

As the user navigates through the building, PTAM con-
tinuously tracks feature points and inserts their 3D positions
into the map. Hence, the map is represented by a point cloud
along the trajectory of the mobile device. In order to reliably
extract geometric properties that relate to the building struc-
ture, we develop a statistical technique that applies a cascade
of projections to the point cloud. The most basic geometric
properties of buildings typically refer to distances between
opposite (parallel) dominant planes in the building structure.
As these features remain visible despite being sampled into a
point cloud, we specifically address the problem of retrieving
this type of properties from a sparse and local point cloud.

A. Relating Point Cloud Features to Building Properties

In contrast to state-of-the-art approaches that use plane fit-
ting in combination with RANSAC [26] or full map matching
(i.e., point cloud matching using ICP [27]), we employ a
combination of steered and random projections to achieve
efficiency while retaining robustness. Steered projections are
based on additional information (e.g., gravity) and allow us to
exploit this knowledge for reducing computational complexity
as early as possible during the estimation process. Random
projections, in contrast, ensure robustness as the data are
typically subject to considerable noise.

Using the inertial measurement unit (IMU) of the mobile
device, the direction of gravity is retrieved in order to identify
the orientation of the building ground plane relative to the
PTAM point cloud. In general, this orientation is arbitrary
and depends on the device orientation at the time when
the map was first initialized. The objective ultimately is to
identify the orientation of an orthogonal coordinate system
that maximizes the correspondence of the point cloud with
up to three orthogonal pairs of parallel planes that define the
dimensions of the current room or corridor (usually four walls,
the ceiling, and the floor). To identify the walls, we project
the point cloud onto the ground plane. Within the resulting
two-dimensional point cloud, the model we search for is a
pair of dominant parallel lines as explained in Sec. [V-B] The
uncertainty for every hypothesis is measured by the spread of
the point cloud around the model. In general, this approach
leads us to find the current corridor’s longer (i.e., dominant)
pair of walls.

For the floor and the ceiling, we project the three-
dimensional point cloud onto the gravity vector, yielding a
one-dimensional distribution. We search for the two dominant
clusters as described in Sec. [V-Bl The cluster centers corre-
spond to the intersections of the projection line with the floor
plane and the ceiling plane, respectively, and thus reveal their
position within the point cloud.

Both the projection onto the ground plane as well as the
projection onto the gravity vector have the purpose of identi-
fying perpendicular structures. Hence, in a two-step process,
we use the position estimates of the dominant planes that
result from the first iteration to re-sort the point cloud. For
the second iteration, the points that agree well with the model
for the floor and the ceiling are removed from the projection
onto the ground plane and, vice versa, points that fit to the
estimated model for the walls are ignored when projecting
onto the gravity vector. This approach sorts the point cloud
into parts that correspond to the floor or the ceiling and parts
that belong to the walls. As a result, the two complementary
projection techniques tend to focus on perpendicular structures
only, and thus converge more precisely.

B. Extracting Point Cloud Features

The central problem is to identify the pair of dominant
parallel lines (planes before the projection) within a two-
dimensional point cloud. We propose to use a statistical
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(a) The camera tracks feature points on the walls of
a corridor (seen from above) and estimates the 3D-
positions of the points. Due to noise, the resulting
point cloud is scattered along the true corridor walls.

:
:

(c) To identify the optimal normal, we project the 2D point cloud
onto each projection line in the bundle and fit a bimodal Gaussian to
the resulting distribution (here projection line 1). The dotted lines
connect the original points with their respective projections. The

resulting bimodal distribution (orange area) exhibits large spread.

Fig. 3.

approach rather than direct model fitting (see Fig. [3). This
allows us to reduce the data by one more degree of freedom
before extracting the desired statistical features and, thus,
further increases speed. We generate a bundle of projection
lines centered at the device’s position, each with a random
orientation. We project the 2D point cloud onto each line
and only then apply statistical model fitting on the now one-
dimensional datasets.

For each line of projection, we fit a bimodal Gaussian
distribution to the projected data points. We employ a tech-
nique known as Otsu’s Method [28]] developed for thresholding
images. This allows us to compute the maximum likelihood
estimate for a bimodal distribution, i.e., to find the optimal
separating threshold between the two modes, without having
to explicitly recompute the within-class variances for each
possible threshold which would be prohibitively expensive.
The maximum likelihood estimate for Gaussian distributions
corresponds to the solution that minimizes the combined
within-class variance, but can be as well computed using just
the cluster means and cardinalities [28]. This way, only very
little complexity is required to identify the optimal distribution

(b) After projecting the point cloud onto the ground
plane, we create a bundle of projection lines at the
camera position in order to find the normal to the
corridor walls.

(d) The estimated bimodal distribution for projection
line 3 (orange area) exhibits the lowest spread (com-
bined within-class variance) and thus is considered
optimal. The two modes identify the true positions
of the corridor walls (compare to (a)).

Projection-based geometric feature extraction from a point cloud as described in Sec. |V-B|

for each projection line and only at this point we compute the
actual within-class variances for each projection line.

The line with the sharpest distribution, i.e., the minimal
combined within-class variance, gives the best estimate for the
normal to the dominant lines in the point cloud. Along this
normal, the two modes of the bimodal distribution mark the
positions of the two dominant lines. Further, the distance of
the modes defines the distance between the two corresponding
opposite dominant planes in the original point cloud, thus
representing one of the room’s dimensions in vision coordi-
nates. This estimate corresponds to the least-squares solution
and, thus, gives the maximum likelihood estimate under the
assumption of additive Gaussian noise on the data.

This procedure is iterated as new sensor readings are col-
lected. After the first iteration, the bundle of projection lines is
divided into one part that continues to be created with random
orientations, and another part that re-attempts the orientation
(angle) that was found to be optimal in the previous iteration.
More precisely, the second part comprises a narrow fan of
projection lines that is centered at the previously optimal angle
in order to allow the system to converge to a stable estimate
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Fig. 4. Images from the dataset used in our experiment. The indoor
environment exhibits various corridor widths, architectural differences and
lighting conditions. Feature-rich areas alternate with monotonous and repeti-
tive structures. Motion blur as well as people walking by may perturb tracking,
a problem that needs to be considered in real-world conditions.

as new points are being inserted into the map. This mixture
of steered and randomly chosen projection lines reduces the
number of lines that have to be sampled at each time step
considerably, thus lowering computational complexity, while
attaining robustness in the presence of severe noise. At each
time step, the combined within-class variance of the optimal
estimate (i.e., of the distribution on the optimal projection line)
defines a measure of uncertainty. Hence, when modifying the
state of a Kalman Filter, we change the scale estimate and
correctly adapt its uncertainty.

VI. EVALUATION
A. Parallel Recovery and Re-Initialization

In order to evaluate the performance of our approach with
respect to map recovery and re-initializations (see Sec. [[II-B)),
we conduct an experiment with four trajectories using videos
from our indoor dataset [29]. The videos have a total length of
34:31 minutes along a track of 680 meters length. The dataset
is not trimmed towards “ideal” conditions, but intentionally
contains diverse lighting situations, reflections, architectural
changes and people walking by (see Fig. [).

We compare our parallel re-initialization approach with two
single-tracking versions of PTAM: The first enters recovery
mode in case of lost tracking and has up to four seconds time
to recover to the old map before a new map is initialized (grace
period). In the following, we call this version PTAM/Rec. The
second immediately initializes a new map when tracking is lost
(in the following called PTAM/NoRec). For each system, we
measure the fraction of time where tracking was successful.
Tracking is considered unsuccessful during recovery or the
initialization of a new map. We also measure the total number
of local maps created.

Results show the expected difference between the two
single-tracking PTAM versions (see Fig. [5). PTAM/Rec is in
tracking state only for 71.9% of the time (standard deviation
of individual videos = 0.11). This is due to the system
always trying to apply recovery in case of tracking failure.
This often fails when the camera has moved on too far

Amount of Successful Tracking (in %)

PTAM/Rec 71,9 %
PTAM/NoRec 93,2 %
Parallel re-initialization 93,0 %
0% 20% 40% 60% 80% 100%

Number of Local Maps

Pravrec [N
Parallel re-initialization m
0 5 10 15 20 25

Fig. 5. Averaged results of tracking with four trajectory videos with a
total length of 34:31 minutes. The parallel recovery and re-initialization
approach needs fewer local maps at the same amount of tracking, compared
to conventional PTAM without recovery (PTAM/NoRec).

and only features disjunct to the previous ones are visible.
PTAM/NoRec manages to track the map during 93.2% of
the time (standard deviation = 0.02) since in case of tracking
failures a new map is initialized immediately and thus no time
is lost for recovery attempts. However, this higher tracking
time of PTAM/NoRec has the drawback of producing a larger
number of local maps: PTAM/NoRec creates 23 maps, while
PTAM/Rec only needs 12 since recovery sometimes allows to
use the old map. Hence, for single-tracking PTAM, there is
a conflict between the competing goals of high tracking time
and a low number of maps.

Our approach of parallel re-initialization performs equiv-
alent to PTAM/NoRec in terms of tracking time. It tracks
the map for 93.0% of the time (standard deviation = 0.02).
However, it needs only 18 local maps, since it has more time
for recovery compared to PTAM/Rec. These results indicate
that parallel re-initialization combines the advantages of being
able to apply a recovery strategy while maintaining a high total
tracking time: On the one hand, the system can revert to the
old map if necessary and the total number of maps can be
reduced. This can be useful, e.g., after motion blur due to
a person in front of the camera. On the other hand, when a
new map is inevitable, no time for recovery is lost and the
no-tracking periods are minimized.

B. Scale Estimation

We evaluate our proposed scale estimation techniques ac-
cording to three different aspects. We refer to the example
of estimating the width of rooms and corridors as we have
these data available in our data set. In addition, however, we
demonstrate the case where ground truth data are not acces-
sible by the system. First, we show the precision of absolute
position estimation when computing the scale by comparing
the estimated corridor width to the true building dimensions.
Second, we show the reliability of detecting and estimating
relative scale jumps that occur due to re-initializations of the
visual odometry system. Finally, we use the estimated relative
scale factors between consecutive maps to augment a Kalman
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Fig. 6.  Our experiments are conducted within the extensive TUMindoor
dataset which comprises several floors of a university main building.
Videos were recorded along the red trajectory. The numbered areas correspond
to the data shown in detail in Figs. [7] and
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Fig. 7. Top: True corridor width taken from a two-dimensional floor plan.
Bottom: Estimated corridor width within the vision coordinate system (PTAM
map). Around second 440, the first corridor ends and a larger one begins. The
change in width is reliably estimated (cf. Area 8 in Fig. .

Filter that tracks the scale as part of its state vector by fusing
inertial and visual data.

Fig. [7] shows at the bottom the continuous estimate of the
current corridor’s width in vision coordinates. At the top, the
corresponding true corridor width is given in metric coordi-
nates. Their ratio defines the absolute scale factor between
vision and metric coordinates and is used to rescale (point
by point) the estimated position trajectory of PTAM. Fig. [§]
shows at the top the three components of the device’s true
trajectory overlaid with the visual odometry data from PTAM
after rescaling. The remaining relative position error is given
at the bottom. On average, it is reduced from above 80% to
below 10%. For this experiment, we tracked the true pose
of the device by attaching it rigidly to a mapping trolley as
described in [29]. The trolley is equipped with laser range
finders to compute its exact pose up to centimeter-precision.
In Fig.[f] the corridor’s location within our dataset is indicated
as Area 8.
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Fig. 8. Top: Rescaled position odometry and ground truth data. The scale
factor is estimated from the ratio of the estimated corridor width and the true
one. A priori known building dimensions derived from a floor plan are used.
Bottom: Successful scale estimation reduces the relative position error from
above 80% to below 10% on average (cf. Area 8 in Fig. |§|)

Fig. [9] shows several parts of the visual odometry trajectory
where re-initializations of the map were necessary. The graphs
depict the continuous estimate of the current corridor’s width.
Green squares denote successful initializations of a new map.
Red dots denote unresolvable tracking failures.

For the most part, the width estimation proves very stable
and converges fast once the vision system is initialized. Map
re-initializations, in contrast, cause significant discontinuities
as the scale may change arbitrarily. Due to the fast reaction
time and robustness of the width estimation, however, the
change in scale can be directly observed as the ratio between
the width estimate before and after the re-initialization.

As the proposed method relies on the assumption that
the local building structure is mainly regular, it happens
that unconventional structure causes the geometric property
estimation to fail. A comparison of Figs. [I0] and [6] shows that
the width estimation failed in the case of a semicircular room
(cf. Area 2 in Fig. |§|), and where the map re-initialization
coincides with the transition between two very dissimilar
building parts (cf. Area 5 in Fig. [6). In particular, the second
case does not satisfy the assumption that geometric building
properties remain locally constant.

For the general case, where there is no a priori knowledge of
a building’s structure, we employ a state-of-the-art Extended
Kalman Filter (EKF) as described in [18]. By fusing inertial
and visual data the filter estimates the scale as part of its state
vector. Fig. [TT] shows the EKF’s scale estimate and estimation
error over a duration of 10 minutes. For the evaluation, we
artificially introduced scale jumps by a factor of two and three
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Fig. 9. Continuous estimation of the corridor width (in vision coordinates).
Green squares denote successful initializations of a new map; red dots denote
unresolvable tracking failures. From top to bottom, the graphs correspond
to Areas 1, 3, 4, 6, and 7 in Fig. @ The reliable estimation allows us to
detect scale jumps that occur due to re-initializations of the vision system. At
these points, the relative scale factor between consecutive maps can be well
observed from the estimated corridor width.

at seconds 200 and 400, respectively.

The graphs [T1(a)] and [T1(b)] demonstrate the strong impact
of scale changes as the filter expects a nearly stationary
scale trajectory. The result is additional convergence time
and estimation errors above 20% for prolonged durations.
Graphs and on the other hand, show the aug-
mented EKF’s behavior with instant scale update derived
from corridor width estimates. Even though the relative scale
change is only approximated, the adaptation suffices to prevent
significant additional convergence time. The estimation error
remains below 20% throughout the experiment.

VII. CONCLUSION

We present a visual odometry system for long-term robust-
ness and consistency. Using a single camera, we employ visual
SLAM to estimate the device’s trajectory. As the odometry
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Fig. 10.  Two situations where the estimation of the corridor width is
not reliable due to locally irregular building structure. Green squares denote
successful initializations of a new map; red dots denote unresolvable tracking
failures. Left: The map re-initialization occurs in a large stairwell with a
partly circular building outline (cf. Area 2 in Fig. @ Right: The map re-
initialization coincides with the transition from a fairly narrow corridor into
a large hall with columns (cf. Area 5 in Fig. @) However, in these cases,
the uncertainty measure indicates the temporarily unreliable corridor width
estimate (cf. Fig. [7} bottom).

data can only be observed up to scale, an Extended Kalman
Filter estimates the scale factor to metric coordinates by fusing
inertial and visual data. As tracking failures of the visual
SLAM system entail the re-initialization of the local map,
they also introduce an arbitrary scale change. In order to
minimize the number of re-initializations, we devise a parallel
re-initialization and recovery strategy. We demonstrate a sub-
stantial reduction of the number of required new maps while
maintaining constantly high tracking time in an experiment
with extensive real-world indoor data.

For the case where re-initialization is inevitable, we propose
to exploit geometric building properties (basic dimensions
of corridors or rooms) to determine the resulting relative
scale change. We present an efficient and robust projection-
based technique to extract these geometric features from a
point cloud, i.e., the local map of the vision system. By
incorporating these estimated relative scale changes into the
state update of a Kalman filter, additional convergence times
are effectively eliminated.

Experimental evaluation using video recordings from our
extensive indoor dataset demonstrates the stable and robust
extraction of geometric properties. Further, comparing our
augmented Kalman Filter to a conventional implementation,
the average scale estimation error of the filter is shown to
be considerably reduced despite re-initializations of the vision
system.
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