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Abstract—Fingerprinting based localisation systems rely on
taking a radio map of the environment and determine the position
of the device by comparing this map to its current measurements.
Therefore the performance of any such system heavily relies on
the accuracy of this comparison. Typically two problems arise:
first, access points can be missed in a scanning cycle both during
the fingerprinting phase as well as during the localisation phase
and second, if different devices are used for fingerprinting and for
localisation their received signal strengths might not be the same
due to differing antenna attenuation. A successful comparison
function has to cope with both of these issues yielding repeatable
high likelihoods for measurements taken in the same location
while at the same time providing sufficiently high discrimination
for measurements taken in different locations. In this paper we
will propose such a likelihood observation function based on
rigorous assumptions. Like most approaches we will compare
RSSI values based on squared Euclidean distance of the log
energies, which is essentially a Gaussian assumption on the
distribution of the measurement error justifiable by arguments
like maximum entropy or the law of large numbers acting on
multiple additive error sources. However, this naive approach
suffers from the varying dimensionality of the log-energy space
caused by missing access points in the measurement. In order
to overcome this in a rigorous manner we propose to model
the access point pickup probabilities using Gibbs distributions
enabling the introduction of rigorously motivated penalties for
these dimension mismatches. As a further extension of the
likelihood observation function we also propose to make it
invariant to differences in antenna attenuation by estimating
these explicitly from the log-energy observations and using the
minimised squared observation residuals as invariant distance
measure instead. We will discuss the properties of this improved
likelihood observation function and compare its performance in
a particle filter based WiFi localisation system.

Index Terms—WiFi localization, Fingerprinting, RSS based
localization

I. INTRODUCTION

Fingerprinting based localisation, i.e. determining the posi-
tion based on comparing a current measurement of received
signal strengths with a map based on previous measurements,
is considered the methods of choice for WiFi based localisation
techniques [1]. One key aspect common to all methods in
this category is the need to determine the distance between

a pair of signal strengths measurements, one taken from the
fingerprint and the other being the current measurement. While
most papers on fingerprinting based localisation focus on the
optimisation of this measure, we will look at the measure itself
only. Hence, the improvements we propose will be directly
and easily applicable to most fingerprinting based localisation
systems.

The early paper of Bahl et al. [2] already pointed out the
importance of proper choice of distance metric and proposed
the use of either the Euclidean or the Manhattan distance be-
tween both signal strength vectors, which has been replicated
by a lot of subsequent approaches. Corte at al. [3] evaluated
different distance metrics including Euclidean, Manhattan,
Chi-Squared, Bray-Curtis, and Mahalanobis, the last of these
achieving the best performance results. Also Biswas et al. [4]
used Mahalanobis distance including variance estimates into
the fingerprint map to improve its performance. Milioris et
al. [5] went one step further by using a multivariate Gaussian
estimating also the correlations between the beacons during
fingerprinting.

Using the Mahalanobis distance (or equivalently a Gaussian
likelihood observation function) became very common in a
variety of approaches (e.g. [6], [7], [8]). Some improvements
to this were proposed by Kaemarungsi et al. [9] who noted
the non-centrality of the χ2 distribution in case the fingerprint
estimate is biased, which has also been noted by Seco et al.
[10]. However all of these approaches essentially stick to the
variance-normalised squared distance as comparison metric for
received signal strength vectors. We will use this as well as a
starting point for the improvements we propose in this paper.

Mirowski at al. [11] state that the signal strength distribution
is not Gaussian at all, so they propose to model the entire
distribution in the fingerprint and compare distributions using
the KL-divergence as a metric instead of single measurements.
Other authors also proposed to use non-Gaussian likelihood
observation functions, for instance Elnahrawy et al. [12] used
a t-distribution as a robustified version of a Gaussian, however
their focus was on the optimisation algorithms not on the
likelihoods used. We will not go down this route in this paper.

Another quite different approach to ours not requiring978-1-4673-1954-6/12/$31.00 c© 2012 IEEE
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explicit modeling of the distance metric are based on un-
supervised machine learning techniques [13]. Brunato et al.
[14] propose to use support vector machines, hence learning
everything from examples rather than explicitly trying to
implement domain knowledge about the distances in signal
strength space. Other approaches in this direction include [15]
using neural networks, or [16] proposing to use decision trees.
We on the contrary will explicitly look at the distance metric
and model it according to the particular problem domain of
signal strengths.

We will take a fresh look at the problem of determining
the likelihood of two signal strengths measurements being
taken in the same location, which is the basis for essentially
all fingerprinting based localisation algorithms. Like most
approaches we will consider the measurement noise to be
Gaussian distributed in log-energy space (which is despite
all the criticism reasonable justifiable by maximum entropy
arguments), but propose to extend it in two ways addressing
two issues encountered by every localisation algorithm based
on this type of likelihood observation function (or equivalently
distance metric between signal strengths measurements).

The first issue we will address is the differing attenuation
of signal strengths measurements occurring due to the use of
different devices or even due to carrying the device differently.
This effect has also been analysed by Vaupel et al. [17], who
proposed a pre-calibration for different devices to increase
the performance of their localisation system. Our proposed
solution to this issue does not require any pre-calibration but
will rely on the presence of enough beacons enabling the
estimation of the relative offset of signal strengths at every
point in time.

The second issue we will look at is much more important. It
addresses the fact that not all beacons are visible everywhere
in the environment, which causes dimensionality mismatches
between the distance metrics that are used. Some attempts
have been made to overcome this, for instance Kushki et
al. [18] pointed out that selecting access points is crucial
for the performance of localisation in order to avoid biased
estimates. Also Gansemer et al. [19], [20] identified this issue
distinguishing the different mismatch scenarios and threshold-
ing the signal strengths values for inclusion into the distance
metric in order to overcome it. Klepal et al. [21], then also
reported in [22], tried to overcome the bias of missed access
points by normalising the likelihood function with heuristic
penalties for the number of missing beacons in either the
fingerprint or the measurement. Our proposed solution to this
problem is more rigorous in the sense that we model the
probability of picking up a particular beacon explicitly in the
likelihood observation function, which enables us to provide
an explicit beacon pickup probability function. For this we
chose to penalise these mismatches based on the missed energy
and use Gibbs distributions (again justifiable by maximum
entropy arguments) resulting in a distance metric between the
fingerprint and the measurement which takes these mismatches
into account. As we will see this will reduce the effect of
the number of beacons on the results and allows comparing

likelihoods with very different number of visible beacons.
We will finally compare the improvements we proposed

with the more naive yet very common approach of a Gaussian
likelihood observation function and show in what scenarios
they differ and potentially improve the localisation results.

II. COMPARING RSSI MEASUREMENTS

A. The naive approach

In this section we will start by describing the common
approach to fingerprinting based localisation based on the
Mahalanobis distance metric in log-energy space. We will use
this to formalise the problem and introduce some notation that
allows us to take a fresh look at the problem and address some
of its issues.

We assume that in a given environment there are K beacons
(usually access points) installed in fixed locations. Each of
these beacons emits a radio signal that we can measure in
parts of the environment. We will collect these measurements
of received signal strengths in a vector

s =
(
s1 · · · sK

)T
(1)

together with a boolean beacon-pickup indicator function

τ : {1, ...,K} → {0, 1} (2)

that tells us whether a particular beacon has been picked up
in this particular measurement or not. We will also assume
an inverse covariance matrix C−1

ss of these measurements to
be known. In order to be consistent with the beacon-pickup
indicator function the nullspace of this matrix has to reflect
the infinite uncertainty about the signal strength values in case
a beacon was not picked up, i.e. τi = 0 ⇒ C−1

ss ei = 0 (with
ei denoting a unit K-vector containing only zeros except in
the i-th position). In order to further simplify the notation in
the following we will also assume a single variance as well
as no correlation between the measurements of the different
beacons. In this case the inverse covariance matrix is simply
given by

C−1
ss = σ−2diag[τ ] (3)

Taking measurements in different locations and making
assumptions on the propagation of the radio signals it is
possible to create a location dependent map of received signal
strengths, usually called a fingerprint, denoted here using the
two location dependent functions

F [x] =
(
F1[x] · · · FK [x]

)T
(4)

for describing the received signal strengths in each location
and

φ[x] : {1, ...,K} → {0, 1} (5)

indicating the beacon-visibility in each location as before. This
allows to easily describe the realistic case of environments
where not every access point is visible everywhere. We will
not go into detail on how to obtain this fingerprint in this paper
but assume it to be given in the following.
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The task of fingerprinting based localisation is now to
determine the most likely position for a given signal strengths
measurement based on comparing it to the previously obtained
fingerprint map. We therefore need to maximise the probability
of the position given the current measurement and the finger-
print map

x̂ = argmaxxp{x|s, τ ,F ,φ} (6)

Applying Bayes’ theorem and noting that the location de-
pendence is encoded in the fingerprint function this posterior
location probability can be rephrased as follows

p{x|s, τ ,F ,φ} = p{s, τ |F [x],φ[x]} p{x}
p{s, τ}

(7)

All components on the right hand side of this equation
have to be considered. However, in this paper we will focus
on the design of the likelihood probability density function
p{s, τ |F [x],φ[x]} only, which is a crucial sub-problem that
has to be solved by every fingerprinting based localisation
algorithm. Neither designing the actual maximisation nor
discussing an appropriate prior to evidence ratio p{x}/p{s, τ}
(which is usually closely linked to the maximisation strategy
used) is within the scope of this paper, although our final
experiments will be carried out using a particle filter based
approach employing a constant velocity motion model to
address these two issues.

Looking closely into the likelihood function we observe that
it can be split as follows

p{s, τ |F [x],φ[x]} = p{s|F [x],φ[x]}p{τ |s,F [x],φ[x]}
(8)

We will look into both factors separately. The first part of this
equation models the likelihood of received signal strengths
measurements. It is common to assume a Gaussian distribution
of the measured signal strengths around the fingerprint here,
which is justifiable by arguments like maximum entropy or the
law of large numbers acting on multiple additive error sources.
Taking into account the possible singularity of the covariance
matrix this measurement likelihood is then given by

p{s|F [x],φ[x]} =
exp [− 1

2 (s− F )TPTC−1
ss P(s− F )]√

(2π)r det
[
PTC−1

ss P
]−1

(9)
using the projection matrix P = diag[φ[x]] for consider-
ing only the subspace of visible beacons in the fingerprint,
r = rank[PTC−1

ss P] being the rank of the projected inverse
covariance matrix, and det[PTC−1

ss P] denoting the product of
its non-zero singular values. In essence this will use the Maha-
lanobis distance between the fingerprint and the measurement
to evaluate the fit. Using the simplified covariance matrix from
equation (3) it simplifies to

p{s|F [x],φ[x]} =
exp

[
− 1

2

∑K
i=1 τiφi[x]

(si−Fi[x])2

σ2

]
√
(2πσ2)

∑K

i=1
τiφi[x]

(10)

This approach only permits zero-mean errors on the measure-
ments. While this is a reasonable assumption if only a single

device is used for fingerprinting and for subsequent localisa-
tion, differing antenna attenuation will potentially introduce a
bias to the measurements, which will incur additional penalties
for each measurement.

Most approaches do not model the second part of equation
(8) at all, which is the beacon pickup probability. This means
that these approaches implicitly assume a uniform distribution

p{τ |s,F [x],φ[x]} = 1

2K
(11)

Doing so, however, will only consider the first part of the
likelihood term and therefore incur a penalty for each beacon
contained in both the fingerprint and the measurement. As
we will discuss later this will favor areas covered by fewer
access points, as the chance of incurring a penalty there is
smaller. This effect is even greater if additional bias penalties
per measurement as discussed above are present.

In the following we will introduce two improvements to this
naive likelihood observation function addressing these issues
by augmenting the classical approach accordingly in order to
better cope with missed access points and differing antenna
attenuation.

B. Improving the likelihood observation function

1) Estimating the antenna attenuation: The first improve-
ment on the likelihood observation function we propose is
to take the differing antenna attenuation into account. This
will allow to compensate for different devices being used for
fingerprinting and for localisation. It also helps to compensate
effects resulting from shielding the device differently, for
instance by wearing it in the pocket. The basic idea is to
estimate a common offset of the measured signal strengths
compared to the signal strengths in the fingerprint for all
received beacons assuming that both are not equal but offset
by a common factor λ. The measured signal strengths and the
fingerprints are then related as follows

φi = τi = 1⇒ si = Fi[x] + λ (12)

This will align the log-energy measurements so that the
measure becomes invariant against multiples of the received
energy.

Using the simplified covariance matrix of equation (3) the
best unbiased estimate of the offset factor (we will call it a
factor because it acts on log-energies) is given by

λ̂ =

∑K
i=1 τiφi[x](si − Fi[x])∑K

i=1 τiφi[x]
(13)

having a variance of

σ2
λ̂
=

σ2∑K
i=1 τiφi[x]

(14)

Looking at the residual differences

ωi = si − Fi[x]− λ̂ (15)
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having the variance

σ2
ω =

1 +
∑K
i=1 τiφi[x]∑K

i=1 τiφi[x]
σ2 (16)

we are now able to use this residual difference in the mea-
surement likelihood function as follows

p{s|F [x],φ[x]} =
exp

[
− 1

2

∑K
i=1 τiφi[x]

ω2
i

σ2
ω

]
√
(2πσ2

ω)
∑K

i=1
τiφi[x]

(17)

This equation replaces the measurement likelihood function
given in equation (10). The introduction of an additional
degree of freedom into this function will of course broaden the
likelihood and make it less discriminative for a single device.
However, as we will show later we found that this approach
allows to generalize better towards different devices during the
localisation phase.

2) Dealing with missing beacons: The second and much
more important improvement on the likelihood observation
function we propose is to model the probability of missing
beacons in the measurement (or equivalently areas not covered
by certain access points in the fingerprint) explicitly. The idea
is to penalize mismatches based on the expected energy being
missed. This missed energy in the case of a mismatch is given
by

ci[τi] =


0 if τi = φi[x]
αFi[x] if τi = 0 ∧ φi[x] = 1
αsi if τi = 1 ∧ φi[x] = 0

(18)

We will therefore use the corresponding maximum entropy
Gibbs distribution for this energy as pickup probability

p{τ |s,F [x],φ[x]} =
K∏
i=1

exp [−βci[τi]]
exp [−βci[0]] + exp [−βτici[1]]

(19)
instead of the uniform distribution given in equation (11),
which is implicitly assumed by approaches taking only the
differences of matched access points into account.

The energy unit α and the temperature parameter β allow to
control the offset and slope of the likelihood function. Figure 1
shows the likelihood observation function for a single beacon
for all four pickup scenarios. As you can see there the penalty
in case of a mismatch depends on the energy being missed as
expected. Also note how the beacon pickup probability shapes
the likelihood observation function in case of matches, making
high energy matches more probable than low energy matches.

In the following we will show the properties of these two
improvements to the likelihood observation function for a real
example.

III. EVALUATION

Having proposed two extensions to the commonly used
Gaussian likelihood observation function for comparing signal
strengths measurements to previously recorded fingerprints we
will now demonstrate how these two improvements affect
the shape of the likelihood function and thereby improve the
localisation accuracy.
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Fig. 1. The proposed likelihood observation function comparing a single
beacon’s measurement to the fingerprint in case both measurements are present
(top left), the beacon was missed in the measurement but is present in the
fingerprint (top right), a beacon is not present in the fingerprint although it
is measured (bottom left), and the beacon occurs neither in the measurement
nor in the fingerprint (bottom right).

Fig. 2. The number if access points covered by our fingerprint. As you can
see everything is covered by at least three beacons with up to eight beacons
covering the central corridor. Obviously localisation performance should be
close to optimal in this kind of environment.

Our experiments were carried out in our office building
depicted in figure 2. This figure also shows the area we
fingerprinted with the number of beacons visible in each single
location. The total number of access points is nine with at least
three and at most eight of them being visible in every single
location.

For the evaluation we used a different device and walked
along a pre-defined path through the building from left to right
as seen in figure 3. This figure also shows the location of

Fig. 3. The path we walked in our experiments (green line) through our
lab. The beacons we use are shown as red circles. The size of the building
is approximately 60m from left to right. Also the residual errors for the
estimated path (blue line) based on the likelihood observation function with
both improvements are shown.
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Fig. 4. We use a particle filter for estimating the final position. Particles are
shown in red and are weighed by the likelihood observation function shown in
blue. The final estimate being the median centroid and its confidence region
are also shown.

the access points as well as the residual errors for our best
performing algorithm. The actual localisation was done using
a particle filter (see figure 4).

Both the fingerprinting as well as the optimisation, i.e.
the particle filter in this case, are not within the scope of
this paper, as the proposed likelihood observation functions
will be applicable to any other implementation of these as
well. We will therefore now look into the different likelihood
observation functions along this path as shown in figures 5 to
9.

It can be seen that the biggest problem of the naive purely
Gaussian approach is the multi-modality of the likelihood
observation function. This is caused by comparing likelihood
values based on error metrics taken in different dimensions.
Simply put each additional dimension, i.e. matched access
point, can only incur a penalty; an effect that is amplified if
the fingerprint value is not the actual mean of the underlying
distribution. In this case areas covered by a smaller number
of access points are favored, as not so much can go wrong
there. The mismatch penalty terms from the Gibbs distribution
counteract this effect in a rigorous way and thereby reduce the
multi-modality of the likelihood observation function.

The second, however not so prominent observation is
regarding the estimation of the device antenna attenuation
in each step. While it of course broadens the likelihood
observation function a bit the overall probability mass close to
the actual position does increase in case of different devices.
Because the distance to the fingerprint can only be reduced
by this, it also reduces the effect of favoring areas of fewer
access points as discussed in the previous paragraph.

To quantify the differences between these three likelihood
observation functions we implemented a particle filter and
measured the residual position error along the path. The cumu-
lative histograms of these errors for all three approaches are
shown in figure 10. While the attenuation estimation slightly
improves the performance compared to the purely Gaussian
likelihood observation function, both of these suffered from the
multi-modality occurring at both ends of the building resulting
from the likelihood observation function ”hiding away” in
areas covered by fewer access points, which is a problem
commonly observed in fingerprinting based localisation sys-
tems. However the likelihood observation function explicitly
addressing this issue by modeling the pickup probabilities

Fig. 5. First of a series of five consecutive snapshots walking along the
path depicting the value of the likelihood observation function (blue circles)
and the estimated position (red circle) for all three algorithms, i.e. using
only the Gaussian (top), using the Gaussian and estimating the attenuation
explicitly (middle), and using the Gaussian with attenuation estimation as
well as modeling the pickup probabilities as Gibbs distribution (bottom).
The top two likelihood functions show a strong multi-modality making
the position estimation ambiguous. Because different devices were used for
fingerprinting and for localisation the intermediate likelihood function yields
a bit better likelihoods in the true position on the top left corner, however
only the introduction of the Gibbs distribution explicitly modeling the pickup
probabilities removes the dominant second mode from the density function
resulting from the lower number of covering access points on the right hand
side of the building.

as Gibbs distributions did not suffer from this so that the
overall localisation performance was significantly improved.
Another observable effect, however not so prominent, is the
slightly increased accuracy as more information, i.e. the pickup
of a beacon itself, is used in determining the value of the
likelihood observation function. This is in contrast to the naive
approach, where not picking up a beacon where it should
have been picked up does not influence the value of the
likelihood observation function other than potentially incurring
less penalty.

IV. CONCLUSION

In this paper we took a fresh look at the likelihood obser-
vation function used in fingerprinting based localisation. We
proposed two improvements on the commonly used Gaussian
approach directly addressing two well-known issues. The first
issue was the differing antenna attenuation between different
devices, which we proposed to address by explicitly estimating
a global offset thereby considering only relative differences
between vectors of received signal strength measurements.
The second and much more important issue was dealing with
environments where not every beacon is visible everywhere,
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Fig. 6. Second of the series of five consecutive snapshots as described in
figure 5. The same effect regarding the multi-modality is still visible, however
it is less prominent now so that all three approaches are now able to perform
similarly.

Fig. 7. Third of the series of five consecutive snapshots as described in
figure 5. Again all three approaches perform quite similar with the attenuation
estimation spreading out the likelihood observation function a bit due to
the introduction of an additional degree of freedom through the attenuation
invariance. Interestingly modeling the pickup probabilities counteracts this
effect a bit as more information is used compensating for this.

Fig. 8. Fourth of the series of five consecutive snapshots as described in
figure 5. The multi-modality occurs again due to the symmetry of the distance
metric used. In this open space area, however, the effect is much stronger now
making the localisation algorithm based on the top two approaches perform
very poorly.

Fig. 9. Fifth and final of the series of five consecutive snapshots as described
in figure 5. Again the multi-modality is the problem being in the same situation
as in figure 5, but now with the particles already concentrated on the wrong
mode the particle filter cannot easily recover.
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Fig. 10. Cumulative residual position error using the different likelihood
observation functions. The pure Gaussian (red) as well as the Gaussian with
attenuation estimation (green) did not allow a reliable position estimate at both
ends of our building, however the attenuation estimation improved the results
slightly when different devices are used for fingerprinting and for localisation.
Modelling the pickup probability explicitly (blue) did not suffer from this
deficiency in our experiments, hence the lowest residual error amongst the
three approaches.

which we proposed to address by explicitly modeling the
pickup probability of Beacons using Gibbs distributions.

Both improvements of the likelihood observation function
were shown to increase the performance of our particle filter
based localisation system, however as a suitable distance
metric between signal strength measurements is at the core
of every fingerprinting based localisation system our findings
are likely to improve all systems currently relying on a purely
Gaussian approach.
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