
2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

Positioning with Multilevel Coverage Area Models

Matti Raitoharju, Simo Ali-Löytty, Robert Piché
Tampere University of Technology

Tampere, Finland

matti.raitoharju@tut.fi

Marzieh Dashti
The University of Sheffield

Sheffield, UK

m.dashti@sheffield.ac.uk

Abstract—Fingerprinting techniques provide good indoor and
urban user location estimates, but using them in large scale
requires an enormous radio map (RM) database. To reduce
the database size, we build a statistical model of the coverage
area (CA) of each wireless communication node (CN) using
“fingerprints” (FP), i.e. reception samples. In previous work we
modeled each CA as a single ellipse, so only 5 parameters need
to be stored in the RM for each CN. In this paper, we investigate
the use of multiple CAs for every CN. FPs are grouped based on
received signal strength (RSS) criteria and CA models are fitted
to different FP groups. Different choices of RSS boundaries are
examined with real data. We present a method for positioning
using the proposed “multilevel coverage area radio map”. The
proposed method is applied on real data sets. The positioning
results are compared with those of conventional single level
CA positioning and a basic location fingerprint methods. The
results show improvement of positioning accuracy compared with
positioning with a single level CA. The improvement is due to
better use of RSS level information in both the offline phase
(constructing the CA radio map) and in the online phase (user
positioning). The proposed multilevel CA positioning works with
a much smaller RM database than the basic location fingerprint
method, without degrading the positioning accuracy in indoor
positioning.

Radio map; Wireless LAN; RSS; Coverage area; Student-t

distribution; Normal distribution; Fingerprint; Positioning

I. INTRODUCTION

Location fingerprinting is a well-known positioning tech-

nique that determines user’s location using a database of

radio signal measurements. A “fingerprint” (FP) contains the

location of the user equipment (UE) and may include a

set of radio characteristics records from a variety of radio

networks, like received signal strength (RSS) and identifier of

the transmitter e.g. identity of a communication node (CN).

CN may be a radio station, a TV station, a cellular network

base station, a WLAN access point or some other sensor

node in a wireless network. In this work the CNs are WLAN

access points. A UE may be a laptop, a mobile phone, or

any other device connected to a wireless network. Location

fingerprinting consists of two phases, an offline data-collecting

phase and an online positioning phase. In the data-collecting

phase, FPs are measured at various locations using positioning-

capable UE [1–4]. The fingerprint database is processed and

used to generate a radio map, which provides information

about radio signal properties as a function of position. In the

positioning phase, the UE samples measurements from CNs

and computes user’s location using the radio map [5].

Location fingerprinting takes into account the effects that

buildings and environment have on radio signals. Hence, in

contrast to many other positioning methods, it does not require

line of sight conditions to ensure acceptable accuracy. This

makes the location fingerprinting method often precise and

reliable in complex environments such as indoor and urban

environments. A drawback of the fingerprinting method is

that, while accuracy may be good when the radio map is up-

to-date, it degrades with time because the radio environment

changes constantly [4, 6]. Moreover, performing extensive data

collecting is needed and storing a huge database (e.g. covering

an entire city or country) is costly.

To reduce the database size, we have used FP data to

construct a statistical model of the coverage area of a wireless

CN [5, 7]. Instead of raw FP data, the radio map consists

of the parameters of the coverage areas (CA). Here, a CA

means the region in the plane where signals from the CN can

be received by the network user. The CAs are modeled as

probability distributions whose parameters may be described

using the mean and the covariance; this CA model may be

visualized as an ellipse. Only five parameters have to be stored

in the radio map for each CA. In the online positioning phase

the CAs of the heard CNs are used to infer the position of the

user.

In [5], the CA is modeled by computing a posterior distribu-

tion using Bayes’ rule. The Bayesian prior models information

about “typical” CAs. This information is especially important

when the FP database contains only a few observations from

a CN. In [5], CAs are fitted by modeling fingerprints as

having a normal (Gaussian) distribution. However, the normal

regression model is well known to lack robustness, i.e. outliers

produce coverage areas that are too large. The Student-t

distribution is an alternative to the Normal distribution that,

due to its heavy tails, is better suited as a model of data that

may contain outliers. In this paper, CAs are modeled using

Student-t and normal distributions as explained in [7, 8].

In our previous works, only one coverage area for every CN

was stored in the radio map [5, 7]. In this paper we consider

the use of multilevel CAs for every CN in radio map. The

FPs are classified into different sets based on their RSS level,

and multilevel ellipse-shaped CAs are fitted to each set of FP

data. In this paper, different criteria for classifying FPs into

different sets are investigated.

A method to use the proposed so-called “multilevel cover-

age area radio map” for positioning is presented. The method
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is tested using real indoor and outdoor positioning data.

Positioning results are compared with conventional single-

level CA positioning and a basic location fingerprint method.

The results indicate the enhancement of positioning accuracy

compared to the positioning with one level CA. The proposed

multilevel CA positioning requires much smaller radio maps

than the basic location fingerprint method, without degrading

the positioning accuracy in our indoor tests.
The remainder of this paper is organized as follow: The

coverage area estimation model is presented in Section II.

Section III describes the coverage area positioning. The test

setup for evaluating positioning performance is described in

Section IV. The positioning results using multilevel coverage

areas are compared in Section V. Concluding remarks are

given in Section VI.

II. MULTILEVEL COVERAGE AREA MODELS

A. One-level coverage area models

In this section, a method for fitting an ellipse-shaped CA

to location FPs is presented. FPs are assumed to follow

multivariate Student-t distribution. The method is less sensitive

to outliers than existing smallest-enclosing ellipse and Normal-

distribution based methods [8].
Here, each observation is modeled as a bivariate (d = 2)

Student-t random vector zn with mean µ, shape Σ, and

ν degrees of freedom. When the degrees of freedom ν is

fixed the mean and shape parameters for the multivariate

Student-t distribution may be computed using Expectation-

Maximization algorithm [8]:

Algorithm for modeling the CA from FPs

initialize u1:N ← ones

for t = 1 to T do

µ←
∑

n unzn/
∑

n un

S←
∑

n un(zn − µ)(zn − µ)
T

Σ−1 ← (N + τ − d− 1) (S + σI)
−1

for n = 1 to N do

un ←
d+ν

ν+(zn−µ)T Σ−1(zn−µ)

end

end

In the algorithm τ is a weight parameter describing the

‘strength” of the prior and σ = τr2 where r represents a

typical range of a CA.
The relationship between covariance matrix P and the shape

matrix Σ is

P =
ν

ν − 2
Σ. (1)

When degrees of freedom ν →∞ the distribution approaches

to normal and P = Σ.

B. Multi-level coverage area models

To determine multi-level CAs of a specific CN, FPs are

classified into groups and a CA ellipse is fitted to each set

of FPs. Three different criteria for classifying the FPs are

proposed as follows:

Figure 1: Two-level coverage areas

1) RSS-level: a presumed RSS threshold value is used to

determine if a FP has strong signal strength.

2) n-strongest: the n fingerprints with the highest RSS

values are classified to the strong set.

3) x%-strongest: the x% strongest RSS-values of each FP

to belong to the strong set.

We also investigate two different ways to deal with the

“weak” area. In one case the RSS-values not considered to

be strong are used for the weak area and in the other method

all of the FPs are used to construct the ‘weak” area. Fig. 1

illustrates the basic idea of modeling two-level CAs, where

the strong CA is constructed using strong FPs (circles) and

weak CA using the weak FPs (asterisks).

III. POSITIONING

A. Positioning using CAs

Assuming a radio map containing multi-level CAs of CNs

is constructed, the goal is to estimate the user’s position using

the radio map and information that the user receives; the

identification codes of heard CNs and their RSS levels.

Let µ1, . . . , µn be the means of the CAs of the CNs that are

observed and P1, . . . , Pn be the corresponding covariances. If

the CAs are assumed to be independent measurements, then

the best linear unbiased estimator (BLUE) of the user position

is

x =
(

LT WL
)−1

LT W
[

µT
1 , . . . , µT

n

]T
, (2)

where

L = [I, . . . , I]T (3)

W = diag(P1, . . . , Pn)−1. (4)

This may be simplified into form

x =

(

∑

i

P−1
i

)−1
∑

i

P−1
i µi. (5)



2012 International Conference on Indoor Positioning and Indoor Navigation, 13-15th November 2012

This is the same equation as derived in [5], where it was

shown to be the Bayesian estimate when the coverage areas

are modeled as Gaussians and the prior is uninformative.

As explained in Section II-B, the CAs were constructed

using different sets of FPs. The positioning phase uses the

same rules to choose which CA is used for each CN.

B. Positioning using fingerprints

As a reference method for positioning we used the weighted

k-nearest neighbor method (WKNN) [4]. In WKNN a FP

database is searched for k FPs that have the most similar

RSS values of CNs and then the user position is computed

as a weighted mean of the positions of FPs in the database.

In our implementation we used k = 5, the similarity of all

RSS values is computed using the 2-norm and the weight of

a FP is proportional to the inverse of the 2-norm. If a FP in

the database did not contain a CN that was in the positioning

measurement it is assumed to have a weak RSS value (-105

dBm).

IV. TEST SETUP

In our tests CA models were fitted using different parameter

values. We tested all combinations of the following values

of parameters: τ ∈ {5, 10, 20} and r ∈ {5, 10, 20, 40, 80}.
Degree of freedom for Student-t was set to ν ∈ {5,∞}, a

typical value for general-purpose robust regression and the

normal model.

A. Indoor

These tests were done inside a university building. The CAs

were fitted using 243 FPs and 331 CNs. Each CN is contained

on average in 28 FPs.

Examples of two-level CA ellipses of three specific trans-

mitters are shown in Fig. 2. The ground truth for our test route

was manually marked using a laptop during the measurement

session. The process of marking positions manually causes

some error to the true route but it should be on the order of a

meter or two.

B. Outdoor

In this test the data contained 26921 FPs collected mostly

on streets in a suburban area. Fingerprints in the test route

had 857 unique CN IDs that were found in the CA database.

On average a CN had 57 FPs containing it. The CA models

were constructed using the same rules and parameters as with

the indoor data. The ground truth was determined using GPS,

meaning that there is a couple of meters of error in the true

route.

V. RESULTS

Table I shows the positioning results on a route inside

a university building for positioning using different rules

for coverage areas. The CAs are constructed according to

rules given in the table. In the positioning phase the CA

corresponding to the first rule, which is true for the FP is

used. The parameters shown in the table are those that had

the smallest mean error for the rule. r1 is the prior ”range”

Figure 2: Three examples of two-level coverage area models

fitted using normal and Student-t regression. In the first

example the two strong FPs in left hand side affect strongly on

normal model while the Student-t is not affected that much.

The second and third examples show the difference of CAs if

the strong FPs are included or excluded from the weak CA.

for the CA generated by Rule 1 and r2,3 is for Rules 2 and 3.

Mean, Median and 95% columns are the mean, median and

95% quantile of the positioning errors given in meters. The

bold numbers are the smallest of each column.

Results show following

• Two CA models give better positioning performance than

one

• Student-t (ν = 5 always in Table I) outperform normal

models with all rules

• It is better to use all FPs for the ”weak” CA instead just

”not strongs”

• In most of cases it was best to use small and weak prior

for CAs (τ = 5, r = 5)

The Student-t models gave on average 0.7 meters better

accuracy than the normal models. We can also see that the use

of the third CA for a CN does not improve the performance
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Table I: Results for indoor positioning
CAs Rule 1 Rule 2 Rule 3 τ r1 r2,3 ν Mean Median 95%

1 all - - 20 5 5 5 11.6 9.8 23.0
2 1-strongest all - 5 5 5 5 10.9 10.2 18.8
2 1-strongest not 1-strongest - 5 5 5 5 11.0 10.5 19.1
2 3-strongest all - 5 5 5 5 9.7 9.6 16.3

2 3-strongest not 3-strongest - 5 5 5 5 9.9 9.9 16.5
2 5-strongest all - 5 5 5 5 9.5 8.9 17.4
2 5-strongest not 5-strongest - 5 5 5 5 9.8 9.3 18.4
2 7-strongest all - 5 5 5 5 10.2 9.5 23.0
2 7-strongest not 7-strongest - 5 5 5 5 11.4 9.9 28.4
2 10%-strongest all - 5 5 5 5 10.1 9.3 17.7
2 10%-strongest not 10%-strongest - 5 5 5 5 10.5 10.4 18.1
2 15%-strongest all - 5 5 5 5 9.6 9.1 18.4
2 15%-strongest not 15%-strongest - 5 5 5 5 10.3 10.6 18.2
2 20%-strongest all - 20 5 5 5 9.5 9.6 17.8
2 20%-strongest not 20%-strongest - 5 5 5 5 10.5 10.2 18.9
2 30%-strongest all - 20 5 5 5 9.9 10.0 18.8
2 30%-strongest not 30%-strongest - 20 5 40 5 11.0 10.0 24.3
2 40%-strongest all - 5 5 5 5 9.8 9.2 19.2
2 40%-strongest not 40%-strongest - 20 5 80 5 10.1 9.5 22.0
2 -75dBm all - 10 5 5 5 9.8 9.7 18.0
2 -75dBm not -75dBm - 5 5 5 5 10.7 10.5 19.3
2 -85dBm all - 5 5 10 5 9.6 9.2 19.4
2 -85dBm not -85dBm - 5 5 40 5 10.6 9.9 20.4
3 1-strongest 5-strongest all 5 5 5 5 9.5 9.0 17.8
3 3-strongest 7-strongest all 5 5 5 5 9.6 8.7 20.9
3 15%-strongest 30%-strongest all 5 5 5 5 9.3 9.1 17.0

Fingerprinting 9.9 8.1 25.1
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Figure 3: Indoor results with different rules for selecting the

strong CAs

much and the 2- and 3-level positioning is comparable to

fingerprinting in accuracy.

In Fig. 3 is a boxplot showing 5%, 25%, 50%, 75% and

95% error quantiles for different n-strongest rules in indoor

positioning. In cases where two values are given in the x-

axis we used three CA models. Used parameter values are

ν = 5, r1 = 5, r2 = 5 and τ = 5, which seemed to the best

for the indoor positioning. From this figure we can see that

the median error of all the methods is almost the same, but

the 75% and 95% error quantiles are smallest when using two

level coverage areas with n = 3 or n = 5 and three level areas

with limits 1 and 3. The reference fingerprinting method has

Figure 4: Comparison of routes

the best 5% and 25% errors, but worse 75% and 95% error

quantiles than the best multilevel models.

In Fig. 4 the routes given by our positioning algorithms

are illustrated. Stars show the reference locations used in

positioning. Dashed line presents the results computed using

a single Student-t CA model and the solid line is the route

computed using two CAs using 5-strongest rule. The 5-

strongest rule is close to accuracy of best methods by all

numbers in Table I.

The results for an outdoor scenario (Table II) show smaller

improvement of use of the multiple coverage areas compared

to the indoor tests. In Fig. 3 is a boxplot showing the error

quantiles for different n-strongest rules in outdoor positioning.
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Table II: Results for outdoor positioning
CAs Rule 1 Rule 2 Rule 3 τ r1 r2,3 ν Mean Median 95%

1 all - - 20 20 5 ∞ 51.9 45.7 103.4
2 1-strongest all - 20 20 20 ∞ 51.7 45.9 107.7
2 1-strongest not 1-strongest - 20 20 20 ∞ 52.0 46.4 107.9
2 3-strongest all - 20 5 10 ∞ 50.7 39.5 121.4
2 3-strongest not 3-strongest - 20 5 10 ∞ 52.0 42.0 121.9
2 5-strongest all - 20 10 20 ∞ 51.8 44.4 117.0
2 5-strongest not 5-strongest - 20 5 10 ∞ 51.5 43.7 116.9
2 7-strongest all - 20 5 20 ∞ 49.8 42.5 96.5

2 7-strongest not 7-strongest - 20 5 10 ∞ 48.5 41.7 103.1
2 10%-strongest all - 20 20 20 ∞ 51.6 45.1 111.2
2 10%-strongest not 10%-strongest - 20 20 20 ∞ 52.8 45.1 115.3
2 15%-strongest all - 20 10 20 ∞ 51.8 44.4 114.1
2 15%-strongest not 15%-strongest - 20 5 10 ∞ 51.1 42.1 113.1
2 20%-strongest all - 20 5 10 ∞ 50.7 43.7 113.2
2 20%-strongest not 20%-strongest - 20 5 10 ∞ 50.5 43.6 104.0
2 30%-strongest all - 20 10 20 ∞ 52.5 44.4 111.5
2 30%-strongest not 30%-strongest - 10 10 20 ∞ 52.7 44.8 107.5
2 40%-strongest all - 20 10 20 ∞ 51.5 43.7 102.7
2 40%-strongest not 40%-strongest - 20 10 40 ∞ 52.5 45.1 103.4
2 -75dBm all - 20 5 20 ∞ 51.0 45.7 102.7
2 -75dBm not -75dBm - 20 5 20 ∞ 52.8 46.8 111.8
2 -85dBm all - 20 20 20 ∞ 50.9 45.5 106.7
2 -85dBm not -85dBm - 20 20 40 ∞ 52.6 48.8 112.1
3 1-strongest 5-strongest all 20 20 20 ∞ 52.0 45.8 110.4
3 3-strongest 7-strongest all 20 5 10 ∞ 50.7 40.5 119.7
3 15%-strongest 30%-strongest all 20 5 10 ∞ 52.2 46.3 120.2

Fingerprinting 43.4 39.0 85.4
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Figure 5: Outdoor results with different rules for selecting the

strong CAs

Used parameter values are ν = ∞, r1 = 10, r2 = 20 and

τ = 20, which seemed to be good values for the outdoor

positioning. From this figure we can see that the use of

multilevel coverage areas does not improve the positioning

as much as in the indoor positioning case.

The normal distribution models outperform the Student-t

and optimal values for τ and r are larger than in our indoor

test. The mean difference between positioning error between

Student-t and normal models is 2.6 meters. The positioning

accuracy is somewhat worse than with the reference finger-

printing method. The reason why normal models are better

than the Student-t models in our outdoor test is illustrated in

Fig. 6. The dots show the locations of FPs that were used

for generating the CAs with thick lines. There are a few FPs

in lower right corner that are considered as outliers in the

Student-t model. In the positioning phase this ellipse affects

more to the estimate than the normal ellipse.

VI. CONCLUDING REMARKS

This paper examines the use of multiple CA models for a

CN instead of one CA for positioning purposes. The proposed

positioning method, using multilevel CA models, is compared

with conventional CA positioning, using one-level CA models,

and reference fingerprinting method.

In our tests with real data we got results showing that

the use of multiple CA models for each CN improved the

positioning results. The proposed method was tested using real

indoor and outdoor positioning data. In indoor tests where

the FPs covered the building well the proposed positioning

method produced results that were even slightly better than

the reference fingerprinting method.

Furthermore, the results show that the CAs constructed

using Student-t regression provide better positioning results

compared to the CAs constructed with normal regression

indoors. In our test the use of three CA models did not give

significant improvement compared to 2-level models.

In outdoors test the improvement was smaller and the

positioning results were better for normal model. The normal

model outperformed the Student-t method because the FP

distribution was not uniform and some FPs that were inliers

were considered as outliers in Student-t regression. To enhance

the positioning accuracy of these cases a robust positioning

algorithm should be used.
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Figure 6: An outdoor positioning example

Our research shows that when building a multilevel radio

map the following should be considered:

• Weak CAs should contain all FPs

• If collected data is nonuniform a larger τ and r values

should be used compared to uniform data

• RSS-level rule should be avoided because it does not

provide better accuracy than rules based on relative

strengths of RSS values and the absolute RSS value is

dependent of the UE used [9]

For the space requirements of multilevel CA models com-

pared to fingerprinting methods we can consider our outdoor

test case. There we had on average 57 FPs for each CN. For

fingerprinting at least two numbers have to be stored in the

FP for each CA (ID of the CA and the RSS). In our test case

we have to store at least 114 numbers on average for a CN.

The two level coverage areas require only 10 numbers for

a CN, 4 numbers for two means and 6 for two covariance

matrices. This simple calculation shows that a positioning

database containing two-level CA models require lot less space

than a fingerprinting database.
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