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Abstract— Several scene analysis methods [1, 2] such as location 
fingerprinting have been proposed to execute room-level localiza-
tion with high accuracy. However, these methods estimate loca-
tions wrongly when received signal strength (RSS) observed at a 
target user’s current position is similar to RSS in another place. 
By utilizing the heuristic of passing through a passable boundary 
point (for example, an entrance door) when moving between 
rooms, we introduce a technique for evaluating the distance be-
tween the current position of the target user and the boundary 
point by comparing RSS around the boundary point with RSS at 
the user in order to reduce the number of erroneous judgments. 
Experiments conducted in office environments confirmed that 
our proposed technique achieved an accuracy rate of 97.1% in 
localizing the target user. 

Keywords- room-level localization; RSS of wireless LAN; 
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I. INTRODUCTION 
Expectations for location-awareness are increasing along 

with the popularization of smartphones in many countries. In 
fact, some location-based services (LBSs) are already provid-
ed. Apple Inc., for example, provides a location-based re-
minder service with its iCloud. It automatically sends a to-do 
list reminder to an iPhone’s user when he or she arrives at a 
preconfigured location. In recent years, LBSs have been pro-
vided for the outdoor environments where GPS can be used.  
LBSs are expected to become available in indoor environ-
ments as well. For that to happen, the localization methods 
must achieve practical accuracy of measurement without the 
costly arrangements of positioning infrastructure. 
An indoor positioning system faces a trade-off between the 

cost of building positioning infrastructure and the accuracy of 
localization measurement. That is, utilizing a high- accuracy 
positioning system offers the possibility of a fine-tuned LBS, 
but an over-engineered positioning system where accuracy is 
higher than necessary might increase costs. Although an ultra 
wide band (UWB) positioning system [3], for instance, can 
measure target position with high accuracy to within about 10 
centimeters, many UWB transmitters must be expensively 
arranged at intervals of a few meters throughout the coverage 
region. That leaves the following question: What is a reasona-
ble positioning system for an indoor LBS? For examples of 
indoor LBSs, we consider the following situations [4]. In a 
hospital, a necessary electronic health record (EHR) is auto-
matically downloaded from an EHR server to a mobile termi-

nal when a nurse enters a patient's bedroom with the terminal. 
In an office building, conference materials for a presentation 
are automatically copied to a mobile terminal when an office 
worker enters a meeting room and automatically deleted from 
the terminal when the worker leaves the room. In these cases, 
knowing in what room the user resides, i.e., room-level locali-
zation [5], is sufficient for LBS, and a more precise position-
ing system is not necessary. Room-level localization is thus 
possible for many kinds of indoor LBS. We therefore aimed to 
achieve robust and cost-effective room-level localization. In 
this paper, we propose a new room-level localization method 
for indoor environments. 
 

II.  RELATED WORK 
Hui et al. [1] categorized positioning methods into three 

types on the basis of their calculation principle: 1) triangula-
tion, 2) proximity, and 3) scene analysis. 1) Triangulation is a 
positioning method that determines the target’s position by 
using the geometric properties of triangles. However, its 
measurement accuracy easily decreases under the influence of 
fading, and it is not suitable for usage in narrow spaces. 2) 
Proximity is a positioning method relying upon a grid of an-
tennas, each having a cell. When the mobile target detects a 
single antenna, it is considered to be within a cell region. If 
high-resolution positioning is necessary, the proximity method 
requires an increased density of antennas. 3) Scene analysis is 
a positioning method using location fingerprints. This method 
first collects features (fingerprints) from a scene and then es-
timates the target’s location by matching online measurements 
with the closest prior location fingerprints. RSS-based location 
fingerprinting [6] is commonly used in scene analysis. Loca-
tion fingerprinting-based positioning methods utilize pattern 
recognition techniques such as probabilistic methods, k-
nearest-neighbor and support vector machines (SVM) [7-10]. 
Additionally, position estimation based on statistical tech-
niques such as Bayesian filters have been proposed [11].  
Among the three methods described above, scene analysis is 

considered the most robust position estimation method [1] and 
room-level localization methods based on scene analysis have 
been proposed [2]. Using observable WLAN RSS, this method 
estimates the room where the target user most likely is on the 
basis of a priori location fingerprints. Its drawback is that it 
may estimate the wrong room when the user is near the edge 
of a room. Fig. 1 helps to explain how such mistakes happen. 
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The target user is at Point Z located near the edge of the room 
(Fig. 1 (a)). In this case, the RSS obtained at Point Z is similar 
to the RSS obtained from Room B, i.e., the location finger-
print of Room B. Fig. 1 (b) illustrates the feature space of RSS 
distribution. Because the RSS observed at Point Z is located 
within the class of Room B, the user’s location is estimated as 
Room B, even though the user is actually in Room A. To solve 
this problem, Chiu et al. [12] and Krumm et al. [13] intro-
duced a path-restriction into the localization algorithm. The 
key idea is as follows. When estimated location at time t dif-
fers from the previous estimation at time t-1, the algorithm 
checks whether the user can actually move from the previous 
position to the current estimated position based on path-
restriction derived from the building layout. If the algorithm 
detects an impossible movement, it first eliminates the mistak-
en estimation and then makes another attempt to estimate the 
likely location of the user. This technique works well only 
when the path-restriction is effective. To our knowledge, no 
localization method has been proposed that can deal with a 
situation like that in Fig. 1 (a), i.e., when no path restriction 
exists between Rooms A and B. 
We therefore propose a new localization method that can 

handle the case depicted in Fig. 1 (a). The remainder of this 
paper is organized as follows. Section 3 describes the pro-
posed localization method in detail. Section 4 confirms the 
effectiveness of the proposed technique through the results of 
experiments. Section 5 summarizes this paper.  
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Figure 1. Problem of room-level localization based on scene analysis. 

III. PROPOSED LOCALIZATION TECHNIQUE 
Our proposed localization method is to be used in indoor en-

vironments such as office buildings and hospitals. These 
buildings consist of various rooms such as offices, hallways, 
conference rooms, and corridors. The goal to be achieved in 
this work is to estimate in which room the target user is, i.e., to 
achieve room-level location with high-accuracy. 
Our room-level localization method adopts a technique to re-

duce the rate of erroneous estimation. The concept of the tech-
nique is based on the heuristic of passing through a boundary 
point (for example, an entrance door, an entry, a front of ele-
vator, and so on) when moving from one room to another. To 
determine whether the target user is near the boundary point, 
the similarity of two RSS vectors is observed. One is obtained 
around the boundary point beforehand, and the other is ob-
served at the user’s current position. If the user is determined 
not to be near the boundary point, the current location of the 
user is estimated under the assumption that the probability the 
user has moved from one room to the other is low. In this pa-
per, we focus on a doorway as a boundary point since we con-
ducted experiments in our office environment. 
Fig. 2 shows the flow chart of the proposed localization 

method. Room-level localization is executed in three steps. 
The first step is to calculate the user’s existence probability in 
each room on the basis of a pattern recognition technique 
(SVM) using WLAN RSS for observation values. The second 
step is to evaluate the distance from the user’s current position 
to each doorway by using observed WLAN RSS and then to 
calculate the transition probability that the user moved from 
one room to another. The third step is to estimate the room in 
which the user exists on the basis of a probabilistic method by 
using the resulting existence probability and the transition 
probability. In the following section, we describe the details of 
these steps.  
 

Getting RSS by receiver

Evaluating the distance to each 
doorway (See 3.B)

Calculating the user’s existence 
probability for each room (See 3.A)

Calculating the posterior probability 
that the user is in each room. 

Calculating the transition
probability for each room

Calculating the observation 
probability for each room

The proposed probabilistic 
localization (See 3.C)

 
 

Figure 2. The flowchart of proposed method. 

 

(a) Problematic situation. 

(b) The feature space of WLAN RSS distribution situation. 
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Figure 3. A simple case of classification in sensor space. 

A.  User’s existence probability in each area 
In this section, we describe how to calculate the user’s exist-

ence probability in each area using the scene analysis method.  
Now we consider an indoor environment where the number 

of WLAN access points (APs) installed is M. Let x={x1, … , 
xM} be the observed RSS vector at the current position of the 
target user. The principle of a scene analysis algorithm [1, 2] 
utilizes the fact that an area has a unique location fingerprint, 
i.e., observable BSSID and RSS characteristics depending on 
location [1]. Here, an area is represented as a class in the M-
dimensional vector space where each spatial axis is RSS from 
each WLAN AP, as shown in Fig. 3. Fig. 3 depicts the case of 
M=2. 
If we can define the boundary plane (line) to distinguish each 

class in M-dimensional vector space, we can correctly estimate 
the user’s location corresponding to the observation value x. 
This can be done by utilizing a pattern recognition technique. 
Pattern recognition using a machine learning technique is per-
formed in three steps: (1) preparing a training data set, (2) 
training a classifier using a learning algorithm, and (3) identi-
fying the class to which the observation value belongs by us-
ing the classifier. 

WLAN RSS is collected beforehand in each area as a train-
ing data set. This is described in detail in section 4.B. We 
adopted a support vector machine (SVM), a two-class classifi-
er, to train a discriminator. Fig. 3 illustrates a simple case in 
which SVM determines the boundary between two classes 
from an input data set. In multi-dimensional space, this 
boundary is represented as a hyperplane.  We adopted SVM 
because it discriminates better than other machine learning 
techniques such as neural networks and k-nearest neighbor 
[14].  
Location fingerprints are generally difficult to separate by 

linear discriminant function because the distribution of RSS in 
multidimensional space is complex depending on deployment 
of APs [15]. To solve this problem, we adopted nonlinear 
SVM with Gauss kernel [14], which can discriminate between 
two clusters by a nonlinear boundary. 

We defined the minimum distance between the observed 
point and the discriminant boundary in the RSS vector space 
as the user’s existence probability. Chang and Lin describe 
how to calculate the probability [16]. The existence probabil-
ity is calculated for each area, and the area with the highest 
probability is regarded as the current user’s location.  

When M WLAN APs are used for localization, the RSS 
vector space becomes M-dimensional. This means that the 
number of dimensions of observation RSS vectors must be M, 
because SVM cannot process pattern matching if the dimen-
sional number of the observation vectors differs from the di-
mensional number of the learning data space. In actual use, 
one faces the problem that Wi-Fi receivers often fail to obtain 
RSSs from all WLAN APs, so the dimensional number of 
actually observed RSS vectors becomes smaller than M. 

This RSS observation loss occurs when the line of sight be-
tween the WLAN receiver and an AP is impeded by another 
person, for example. Thus, we decided to compensate for lost 
RSS observation with the lowest sensitivity of the WLAN 
receiver (-95dBm). 
 

B.  The distance between the user and the doorway 
In this section, we introduce a parameter representing the dis-

tance between the current position of the target user and the 
entrance door.  

The situation is shown in simplified terms in Fig. 4, where 
only one WLAN AP is fixed near the doorway. We set the 
point P near the entrance door and point Qi (i=0,...,4) as ob-
servation points.  

Let m be the mean value of RSS observations at P, and xi 
the RSS observation at Qi. Here, we define di as the following 
formula. 
 

 (1) 
 
We will show the physical sense of di through the results of 

experiment. We measured RSS 100 times at point Qi. The 
mean value and standard deviation of di are plotted in Fig. 5. 
Here, we noted that Q0 coincides with P. As seen in Fig. 5, di 
tends to decrease as the distance from the doorway increases. 
This corresponds to the fact that WLAN signal strength de-
creases exponentially in accordance with the distance from the 
access point. Looking at the results for Q0, Q1, Q2, and Q3 in 
Fig. 5, di appears to be a good parameter for representing the 
distance between the observation point and the doorway, but it 
is actually insufficient. In spite of the short distance between 
Q4 and the doorway, d4 has a relatively high value. This is 
because RSS decreases depending not only on the distance 
between AP and receiver but also on the influence of walls 
that shield RF waves. 
To evaluate di consistently whether shielding obstacles exist 

or not, we used the following method. We set the point P in 
inside the room, and Pout outside the room. Let m in be the 
mean value of RSS at P in and mout the mean value of RSS at 
Pout. Using these parameters, we redefine di as follows.  
 

|| mxd ii −≡
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Figure 4. A preliminary experiment to evaluate the distance between the 

entrance door and observation points. 
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Figure 5. Results of experiment. 

 
(2) 

 
 
Thus, di can represent the distance between the observation 

point and the doorway regardless of the existence of obstacles.  
Ordinarily, multiple APs are installed in the environment, so 
we generalized equation (2) to the multiple AP case as follows. 
 

 (3) 
 
where ||.|| denotes Euclidean distance, and x i, m in, and mout 
the RSS vectors of multiple APs.  
To handle situations where multiple doorways exist in a 

room, minimum di is selected as follows.  
 

(4) 
 
where j denotes the index of the doorway and J the number of 
doorways. 
Next, we discuss how to arrange WLAN access points in an 

environment. As mentioned above, RSS from AP decreases 
exponentially as distance increases. If the target user is far 
from the AP, the RSS value is severely influenced by noise 
because the value is quite low, causing loss of RSS observa-
tion. The less RSS observation is lost, the more stably our 
proposed method operates. Thus, an AP should be set near the 
doorway. 

C.  Room-level localization  using probabilistic method 
In this section, we describe a room-level localization using 

a probabilistic method. Our localization method uses the us-
er’s existence probability discussed in section 3.A and the 
distance di introduced in section 3.B.  

In our method, the probability of the user’s location is up-
dated sequentially when RSS observation is obtained. In the 
following, we explain basic ideas of our method to calculate 
the posterior probability after obtaining RSS observations. 
 We use the user’s existence probability based on RSS 

observation discussed in section 3.A to estimate the 
user’s location. 

 If the user is far from a doorway, we consider the user 
to be unlikely to have moved from the previous room 
to another one. That is, the probability that the user 
has moved from the previous room to another one be-
comes low. 

 The large observation noise is sometimes added to 
RSS, which causes the unexpected location estimation. 
However, the user has not moved suddenly from the 
previous room. To prevent such error, we use the 
probability that the user was in room at the previous 
time, as the prior probability.  

On the basis of those ideas, the posterior probability of the 
target user’s location yt at time t is calculated as (5), when 
obtaining a sensor observation o t, i.e., WLAN RSS and the 
previous estimated location 

1ˆ −ta .  
 

(5) 
 
x t  is the observation variable of RSS, and p(yt) the prior prob-
ability of the user’s location. We note that a prior probability 
at time t equals a posterior probability at previous time t-1. 

)|( tttyp ox =  denotes the probability that the user is in the 
location yt when RSS observation vector o t is obtained. We 
use the user’s existence probability discussed in section 3.A as 
this probability. Also, )ˆ|( 11 −− = ttt ayyp  represents the possibil-
ity to move from the previous estimated location 1ˆ −ta

 
 to the 

current location yt that the user is in at time t, which is called 
the state transition probability. Here, supposing the previous 
estimation result is accurate, we adopt 1ˆ −ta  as the previous 
given location. Consequently, we obtain the current estimated 
location tâ as the user’s location that has the maximum poste-
rior probability at time t in (5).  

Now, we formulate the transition probability as follows on 
the basis of the distance di in (4) discussed in section 3.B. We 
take the following two points into account to formulate the 
state transition probability. The first point is that we make the 
state transition probability high when the target user is near 
the doorway. The second point is that the probability of occur-
rence for the user to remain in the same room at time t does 
not rely on the distance from the doorway. Hence we adopted 
the constant value as the probability of this event.  Consider-
ing these points, we formulate the state transition probability 
as follows. 

( )||||||,||min outin mxmx −−= iiid

( )Jijiiji dddd ,,1, ,,,,min =

( )|||,|min outin mxmxd iii −−=
)()ˆ|()|()ˆ,|( 1111 tttttttttttt ypayypypayyp −−−− ==∝== oxox
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    (6) 

 

 
where )(

1ˆ, tay tt
d o

−
 is represented by di in (4) from the current 

user’s position to the doorway between the location ty and the 
location 

1ˆ −ta  under the condition we observe RSS vector o t. To 
describe the relationship between the distance and the transi-
tion probability in general, we adopt the following logistic 
function. 
 

(7) 
 

 
where d th and k are parameters that determine the nature of the 
logistic function. As shown in Fig. 6, the function takes 0.5 
when )(

1ˆ, tay tt
d o

−
 is equal to d th. This means that the probability 

for the user to move to another room equals to one for the user 
to remain the same room when the user is just at the doorway. 
Thus we used the average of di at the doorway of the room as 
d th. 
To avoid a situation in which the posterior probability almost 

equals zero, which would prevent updating of the posterior 
probability, we apply additional smoothing to the posterior 
probability, as follows.  
 

(8) 
 

 

where γ  is the coefficient of smoothing. We determine exper-
imentally the value of γ  in this work. 
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Figure 6. Transition probability based on distance to the doorway. 

 
 

IV. PERFORMANCE EVALUATION 

A.  Experimental setup 
We used a Fujitsu F-12C smartphone as the sensor for 

WLAN RSS data. The data sampling rate was 1.4 seconds. We 
used a Fujitsu FMWT-54AG WLAN access point to send 
BSSID as a beacon signal. In the experiment, we moved along 
a predetermined path and logged WLAN RSS to an SD card 
on the smartphone. We executed localization using our pro-
posed method on an offline desktop PC. 
 

B.  Experimental environment and training data set 
Fig. 7 illustrates the experimental environment. The envi-

ronment is one floor in an office building, comprising three 
rooms connected to one hallway. Those four areas are com-
partmentalized by walls. The number of doorways differs with 
each area, with one doorway each in Area A and Area B, three 
doorways in Area C, and five doorways in Area D. 

There are four APs, represented by blue stars in Fig. 7, with-
in the environment. When estimating the user’s area, we used 
RSSs from those four APs and other APs located in the office 
building whose RSS was observable in the environment. Con-
sequently, the total number of available APs was 17, so the 
dimension number of observed vectors of RSS was M=17.  
A training data set of RSS for each area had to be collected in 

order to implement the scene analysis method described in 
section 3.A. To collect the training data set of RSS, the user 
walked around in each area holding the smartphone in one 
hand. The number of training data points in each area was 200, 
which we determined empirically.  
Also, we had to measure values of RSS near doorways for 

evaluating the distance to each doorway as described in sec-
tion 3.B. The red crosses in Fig. 7 represent the observed 
points near the doorway. To collect RSSs, the user stayed still 
at each observed point, and 100 samples of RSS vectors were 
collected.  
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Figure 7. Experimental environment is one floor in an office building, 

comprising four areas, i.e., three rooms and one hallway. 
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Figure 8. The pathways in experiments. 

C.  Test data set 
Fig. 8 illustrates the pathways in our experiments. The purple 

square represents the start position, the diamond represents the 
goal position, and the dotted lines represent the pathway. The 
target user moved from one room to another, passing through 
the entrance doors between those rooms when following each 
pathway. The user remained at the goal position in each path-
way for a while in order to evaluate the performance of our 
proposed method near walls, where erroneous judgment often 
occurs with the scene analysis method. Thus, we obtained test 
data by observing RSS vectors while passing along each 
pathway and staying at each goal position. The total number of 
pathways was 10. We collected 150–200 samples of RSS vec-
tors in each pathway.  
 

D.  Evaluation method 
We evaluated the performance of our proposed method using 

an accuracy rate. The accuracy rate was calculated in each 
pathway by dividing the number of times when the estimated 
room accorded with the actual room in which the user was 
located by the number of collected samples in each pathway. 
This estimation results were obtained through offline imple-
mentation of the method described in section 3.C to the test 
data set described in the previous section. 
To validate the effectiveness of introducing our proposed 

transition probability (6), we identified the difference in the 
accuracy rate when calculated with and without the probability 
(6). We refer to the latter method as the “previous method,” 
since it has been reported as a type of scene analysis method 
[1]. We implemented the previous method by setting 

),);(( thˆ, 1
kddf tay tt

o
−

in (6) as the value 0.5 at any time step. Addi-
tionally, the initial prior probability of each area is set as 
p(yt)=0.25, because there are four rooms, and we assume the 
user is equally likely to be in each room. We determined em-
pirically the parameters in (7) and (8) as k=-1, d th=15.0, 
γ=0.05. 
 

E.  Experimental results 
Fig. 9 shows the results of experiments on 10 pathways. The 

horizontal axis represents the index of the pathways, and the 

vertical axis the accuracy rate. The blue bar in the histogram 
denotes the previous method, and the red bar our proposed 
method. In the experiment, our proposed method achieved an 
average accuracy rate of 97.1% for localizing the target user, 
while the previous one achieved a rate of 81.7%. In particular, 
the accuracy rate of our proposed method was more than 50% 
higher than that of the previous method in the cases of A4 and 
A5.  
From the results of A4, we consider why the proposed meth-

od remarkably improves the accuracy of location estimation. 
We first look at the posterior probability (5) described in sec-
tion 3.C. Fig. 10 (a) and (b) illustrate the time-varying posteri-
or probabilities that the user was in the initial Area D and the 
destination Area A, respectively.  The blue lines represent the 
resulting posterior by using the previous method, and the red 
lines the proposed method. After the user actually moved to 
Area A, the previous method made estimation errors continu-
ously and erroneously estimated the user’s location to be in 
Area D with high probability. In contrast, after the user passed 
through the doorway between Area A and Area D, our method 
estimated the posterior probability in Area A to be significant-
ly high, in accordance with the user’s actual movement. Since 
the proposed method performs correctly when the target user 
is far from doorways, the estimation accuracy was clearly im-
proved.  
We also look at the effect of the state transition probability 
that we originally introduced. Fig. 11 shows the time-varying 
distance di calculated by (4), and Fig. 12 shows the variation 
of the state transition probability calculated by (6) over time. 
As shown in Fig.11, the distance di takes minimum value at 
time T0, which corresponds to the time when the user actually 
passed through the doorway, and increases afterward while 
moving. This indicates that the distance di reasonably repre-
sents the actual distance between the current user’s position 
and the doorway. Fig. 12(b) also shows that the state transition 
probability takes a high value just before T0, and Fig. 12(a) 
shows this probability takes a low value just after T0, corre-
sponding to the variation of di. This property of the state tran-
sition probability contributes to make the location estimation 
robust even if the existence probability in a false room be-
comes high because of wrong observation. 
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Figure 9. Experimental result of room-level localization. 
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Figure 10. The time-varying posterior probability in experiment A4. 
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Figure 11. The time-varying distance between user’s position and  the 

entrance door no. X in experiment A4. 
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Figure 12. The time-varying transition probability in experiment A4. 

. 

V.  CONCLUSION 

In this paper, we have proposed a highly accurate room-level 
localization method. In our proposed technique, we introduce 
a novel transition probability, evaluated by using the distance 
from an observed point to a passable boundary point between 
rooms. Experimental results show that our proposed method 
resolves the problem of estimation error occurring when the 
received signal strength (RSS) observed at a target user’s posi-
tion is similar to RSS observed in other areas. Applying our 
proposed method improved the average accuracy rate signifi-
cantly, from 81.7% to 97.1%.  
 

(b) Area A 

(a) Area D 

(b) Area A 

(a) Area D 
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